Commit Graph

16 Commits

Author SHA1 Message Date
Ariel Frischer 2d4615e655 refactor(llm.py): simplify temperature handling logic for better readability and maintainability
fix(llm.py): ensure default temperature is set correctly for different providers
2025-01-24 17:09:01 -08:00
Ariel Frischer 6c4acfea8b
Added Provider/Model Override Arguments to Seperate Research/Planner Configurations (#53)
* feat: add research and planner provider/model options to enhance configurability for research and planning tasks
refactor: create get_effective_model_config function to streamline provider/model resolution logic
test: add unit tests for effective model configuration and environment validation for research and planner providers

* refactor(agent_utils.py): remove get_effective_model_config function to simplify code and improve readability
style(agent_utils.py): format debug log statements for better readability
fix(agent_utils.py): update run_agent functions to directly use config without effective model config
feat(agent_utils.py): enhance logging for command execution in programmer.py
test(tests): remove tests related to get_effective_model_config function as it has been removed

* chore(tests): remove outdated tests for research and planner agent configurations to clean up the test suite and improve maintainability

* style(tests): apply consistent formatting and spacing in test_provider_integration.py for improved readability and maintainability
2025-01-24 18:00:47 -05:00
AI Christianson 54fdebfc3a Do not incorrectly give temp parameter to expert model. 2025-01-24 10:37:35 -05:00
Ariel Frischer 686ab42f88
Add Deepseek Provider Support and Custom Deepseek Reasoner Chat Model (#50)
* chore: Add DeepSeek provider environment variable support in env.py

* feat: Add DeepSeek provider validation strategy in provider_strategy.py

* feat: Add support for DEEPSEEK provider in initialize_llm function

* feat: Create ChatDeepseekReasoner for custom handling of R1 models

* feat: Configure custom OpenAI client for DeepSeek API integration

* chore: Remove unused json import from deepseek_chat.py

* refactor: Simplify invocation_params and update acompletion_with_retry method

* feat: Override _generate to ensure message alternation in DeepseekReasoner

* feat: Add support for ChatDeepseekReasoner in LLM initialization

* feat: Use custom ChatDeepseekReasoner for DeepSeek models in OpenRouter

* fix: Remove redundant condition for DeepSeek model initialization

* feat: Add DeepSeek support for expert model initialization in llm.py

* feat: Add DeepSeek model handling for OpenRouter in expert LLM initialization

* fix: Update model name checks for DeepSeek and OpenRouter providers

* refactor: Extract common logic for LLM initialization into reusable methods

* test: Add unit tests for DeepSeek and OpenRouter functionality

* test: Refactor tests to match updated LLM initialization and helpers

* fix: Import missing helper functions to resolve NameError in tests

* fix: Resolve NameError and improve environment variable fallback logic

* feat(readme): add DeepSeek API key requirements to documentation for better clarity on environment variables
feat(main.py): include DeepSeek as a supported provider in argument parsing for enhanced functionality
feat(deepseek_chat.py): implement ChatDeepseekReasoner class for handling DeepSeek reasoning models
feat(llm.py): add DeepSeek client creation logic to support DeepSeek models in the application
feat(models_tokens.py): define token limits for DeepSeek models to manage resource allocation
fix(provider_strategy.py): correct validation logic for DeepSeek environment variables to ensure proper configuration
chore(memory.py): refactor global memory structure for better readability and maintainability in the codebase
2025-01-22 07:21:10 -05:00
Ariel Frischer 32fcf914ed
Set Default Max Token Limit with Provider/Model Dictionary and Limit Tokens for Anthropic Claude React Agent (#45)
* feat(agent_utils.py): add get_model_token_limit function to retrieve token limits for models based on provider and model name
feat(models_tokens.py): create models_tokens module to store token limits for various models and providers
test(agent_utils.py): implement unit tests for get_model_token_limit and create_agent functions to ensure correct behavior and error handling

* test: Add unit tests for token limiting and agent creation functionality

* fix: Correct indentation and add missing test function for error handling

* fix: Update test assertion to use messages_modifier instead of state_modifier

* feat(agent_utils.py): add limit_tokens function to manage message token limits and preserve system message
fix(agent_utils.py): update get_model_token_limit to handle exceptions and return None on error
fix(ciayn_agent.py): set default max_tokens to DEFAULT_TOKEN_LIMIT in CiaynAgent initialization
feat(models_tokens.py): define DEFAULT_TOKEN_LIMIT for consistent token limit management across agents
style(agent_utils.py): improve code formatting and consistency in function definitions and comments
style(agent_utils.py): refactor imports for better organization and readability
fix(test_agent_utils.py): correct test assertion to use state_modifier instead of messages_modifier for create_agent function

* refactor(agent_utils.py): improve docstring clarity and formatting for limit_tokens function to enhance readability
refactor(test_agent_utils.py): format test assertions for consistency and readability in agent creation tests

* feat: Update limit_tokens function to support Dict type for state parameter

* feat: Update limit_tokens to handle both list and dict input types

* refactor: Extract duplicate token trimming logic into helper function

* refactor: Rename and update message trimming functions for clarity

* refactor: Extract agent kwargs logic into a helper method for reuse

* refactor: Rename _build_agent_kwargs to build_agent_kwargs for clarity

* fix: Ensure state_modifier is passed correctly for agent creation

* test: Add tests for create_agent token limiting configuration

* refactor: Simplify CiaynAgent instantiation to only use max_tokens parameter

* refactor: Remove is_react_agent parameter from build_agent_kwargs function

* test: Fix test assertions for state_modifier in agent creation tests

* fix: Update agent creation to handle checkpointer and simplify tests

* test: Remove unnecessary assertions from agent creation test

* feat: Implement token limiting configuration for create_agent function

* refactor: Remove unused model info and token limit retrieval code

* test: Fix assertion errors in agent creation tests and update state_modifier handling

* test: Remove commented-out code and clarify assertions in tests

* test: Fix assertion in test_create_agent_anthropic_token_limiting_disabled

* feat(main.py): add --limit-tokens argument to control token limiting in agent state
fix(main.py): include limit_tokens in configuration to ensure proper state management

* test: Refactor agent creation tests for improved readability and consistency

* test: Modify error handling in create_agent test to use side_effect on get_model_token_limit

* test: Improve error handling in create_agent test to verify fallback behavior

* test: Trigger exception on get_model_token_limit in error handling test

* refactor(agent_utils.py): remove unused config parameter from create_agent function to simplify the function signature
fix(agent_utils.py): ensure config is always retrieved from _global_memory with a default value to prevent potential errors
test(tests/test_agent_utils.py): remove outdated test for create_agent error handling to clean up the test suite

* feat: Add debug print for agent_kwargs in create_agent function

* refactor: Replace lambda with inner function for state_modifier in agent_utils

* refactor: Simplify limit_tokens function to return only message sequences

* feat: Add debug print statements to show token trimming details in trim_messages

* PAIN

* feat(main.py): add debug print statement for args.chat to assist in troubleshooting chat mode
feat(agent_utils.py): implement estimate_messages_tokens function to calculate total tokens in messages
refactor(agent_utils.py): replace token counting logic in trim_messages_with_removal with estimate_messages_tokens for clarity
refactor(agent_utils.py): modify state_modifier to accept model and max_tokens parameters for better flexibility
refactor(agent_utils.py): update build_agent_kwargs to pass model to state_modifier for improved functionality

* feat: Add .direnvrc to manage Python virtual environment activation

* refactor: Update state_modifier to handle first message token count and trim messages

* chore: remove unused .direnvrc file to clean up project structure
feat: add .envrc to .gitignore to prevent environment configuration file from being tracked
fix: update help text for --disable-limit-tokens argument for clarity
refactor: clean up imports in agent_utils.py for better readability
refactor: remove unused functions and comments in agent_utils.py to streamline code
test: add unit tests for state_modifier function to ensure correct message trimming behavior

* refactor: Remove commented-out code in create_agent function

* feat: Add is_anthropic_claude method to check provider and model name

* fix: Correct search/replace block to match existing lines in agent_utils.py

* fix(main.py): update help text for --disable-limit-tokens argument to clarify it applies to react agents
refactor(agent_utils.py): streamline token limit retrieval and improve readability by removing redundant checks and restructuring code
refactor(agent_utils.py): modify build_agent_kwargs to use is_anthropic_claude for clarity and maintainability

* test: Update tests to pass config argument to get_model_token_limit()

* refactor(agent_utils.py): remove unnecessary print statements and improve function signatures for clarity
refactor(agent_utils.py): consolidate provider and model_name retrieval into config parameter for better maintainability

* test: Remove redundant token limiting tests from agent creation logic

* test: Refactor test_state_modifier to use mock_messages fixture

* test(tests): update test description for clarity on state_modifier behavior and use mock_messages for assertions to ensure consistency

* refactor(agent_utils.py): simplify token limit retrieval by removing unnecessary variable initialization and defaulting to None in get method

* chore(main.py): remove debug print statement for args.chat to clean up output
2025-01-20 14:41:29 -05:00
arthrod ffe5138a99
Adding Gemini API due to openrouter's limitations. (#34) 2025-01-04 07:19:05 -05:00
AI Christianson a28ed59bca Add --temperature CLI parameter. 2024-12-28 18:36:24 -05:00
AI Christianson 684b076dbf Adjustments to get smaller agent models working better. 2024-12-28 17:31:41 -05:00
AI Christianson 1fc64c5151 Allow chat agent to spawn research agent. 2024-12-21 10:58:08 -05:00
AI Christianson 942ec24f5e Version bump 2024-12-20 15:13:39 -05:00
AI Christianson f096a06119 Reduce model temperatures to 0. 2024-12-20 13:41:27 -05:00
AI Christianson a1d521c5e2 improve programmer prompt 2024-12-18 12:29:01 -05:00
AI Christianson 6c85d7fd6f expert LLM configuration 2024-12-13 14:54:56 -05:00
AI Christianson 36e00d8227 make expert model configurable 2024-12-13 14:19:42 -05:00
AI Christianson 250bf0a84c let aider figure out which model to use 2024-12-13 13:31:22 -05:00
AI Christianson 9f721410ff support open models 2024-12-13 09:44:06 -05:00