let aider figure out which model to use

This commit is contained in:
AI Christianson 2024-12-13 13:31:22 -05:00
parent ed04230267
commit 250bf0a84c
3 changed files with 55 additions and 40 deletions

View File

@ -82,9 +82,6 @@ Examples:
# Create console instance
console = Console()
# Create the base model
model = initialize_llm(parse_arguments().provider, parse_arguments().model)
# Create individual memory objects for each agent
research_memory = MemorySaver()
planning_memory = MemorySaver()
@ -125,10 +122,6 @@ def get_research_tools(research_only: bool = False) -> list:
planning_tools = [list_directory_tree, emit_expert_context, ask_expert, emit_plan, emit_task, emit_related_files, emit_key_facts, delete_key_facts, emit_key_snippets, delete_key_snippets, read_file_tool, fuzzy_find_project_files, ripgrep_search]
implementation_tools = [list_directory_tree, run_shell_command, emit_expert_context, ask_expert, run_programming_task, emit_related_files, emit_key_facts, delete_key_facts, emit_key_snippets, delete_key_snippets, read_file_tool, fuzzy_find_project_files, ripgrep_search]
# Create stage-specific agents with individual memory objects
planning_agent = create_react_agent(model, planning_tools, checkpointer=planning_memory)
implementation_agent = create_react_agent(model, implementation_tools, checkpointer=implementation_memory)
def is_informational_query() -> bool:
"""Determine if the current query is informational based on implementation_requested state.
@ -188,7 +181,7 @@ def run_agent_with_retry(agent, prompt: str, config: dict):
time.sleep(delay)
continue
def run_implementation_stage(base_task, tasks, plan, related_files):
def run_implementation_stage(base_task, tasks, plan, related_files, model):
"""Run implementation stage with a distinct agent for each task."""
if not is_stage_requested('implementation'):
print_stage_header("Implementation Stage Skipped")
@ -224,7 +217,7 @@ def run_implementation_stage(base_task, tasks, plan, related_files):
run_agent_with_retry(task_agent, task_prompt, {"configurable": {"thread_id": "abc123"}, "recursion_limit": 100})
def run_research_subtasks(base_task: str, config: dict):
def run_research_subtasks(base_task: str, config: dict, model):
"""Run research subtasks with separate agents."""
subtasks = _global_memory.get('research_subtasks', [])
if not subtasks:
@ -255,11 +248,13 @@ def run_research_subtasks(base_task: str, config: dict):
run_agent_with_retry(subtask_agent, subtask_prompt, config)
def validate_environment():
"""Validate required environment variables and dependencies."""
missing = []
def validate_environment(args):
"""Validate required environment variables and dependencies.
args = parse_arguments()
Args:
args: The parsed command line arguments
"""
missing = []
provider = args.provider
# Check API keys based on provider
@ -288,8 +283,11 @@ def main():
"""Main entry point for the ra-aid command line tool."""
try:
try:
validate_environment()
args = parse_arguments()
validate_environment(args) # Will exit if env vars missing
# Create the base model after validation
model = initialize_llm(args.provider, args.model)
# Validate message is provided
if not args.message:
@ -309,11 +307,16 @@ def main():
# Store config in global memory for access by is_informational_query
_global_memory['config'] = config
# Create research agent now that config is available
research_agent = create_react_agent(model, get_research_tools(research_only=_global_memory.get('config', {}).get('research_only', False)), checkpointer=research_memory)
# Run research stage
print_stage_header("Research Stage")
# Create research agent with local model
research_agent = create_react_agent(
model,
get_research_tools(research_only=_global_memory.get('config', {}).get('research_only', False)),
checkpointer=research_memory
)
research_prompt = f"""User query: {base_task} --keep it simple
{RESEARCH_PROMPT}
@ -327,11 +330,15 @@ Be very thorough in your research and emit lots of snippets, key facts. If you t
raise # Re-raise to be caught by outer handler
# Run any research subtasks
run_research_subtasks(base_task, config)
run_research_subtasks(base_task, config, model)
# Proceed with planning and implementation if not an informational query
if not is_informational_query():
print_stage_header("Planning Stage")
# Create planning agent
planning_agent = create_react_agent(model, planning_tools, checkpointer=planning_memory)
planning_prompt = PLANNING_PROMPT.format(
research_notes=get_memory_value('research_notes'),
key_facts=get_memory_value('key_facts'),
@ -348,7 +355,8 @@ Be very thorough in your research and emit lots of snippets, key facts. If you t
base_task,
get_memory_value('tasks'),
get_memory_value('plan'),
get_related_files()
get_related_files(),
model
)
except TaskCompletedException:
sys.exit(0)

View File

@ -4,33 +4,41 @@ from langchain_anthropic import ChatAnthropic
from langchain_core.language_models import BaseChatModel
def initialize_llm(provider: str, model_name: str) -> BaseChatModel:
"""Initialize a language model client based on the specified provider and model.
Note: Environment variables must be validated before calling this function.
Use validate_environment() to ensure all required variables are set.
Args:
provider: The LLM provider to use ('openai', 'anthropic', 'openrouter', 'openai-compatible')
model_name: Name of the model to use
Returns:
BaseChatModel: Configured language model client
Raises:
ValueError: If the provider is not supported
"""
if provider == "openai":
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
raise ValueError("OPENAI_API_KEY environment variable is not set.")
return ChatOpenAI(openai_api_key=api_key, model=model_name)
elif provider == "anthropic":
api_key = os.getenv("ANTHROPIC_API_KEY")
if not api_key:
raise ValueError("ANTHROPIC_API_KEY environment variable is not set.")
return ChatAnthropic(anthropic_api_key=api_key, model=model_name)
elif provider == "openrouter":
api_key = os.getenv("OPENROUTER_API_KEY")
if not api_key:
raise ValueError("OPENROUTER_API_KEY environment variable is not set.")
return ChatOpenAI(
openai_api_key=api_key,
openai_api_key=os.getenv("OPENAI_API_KEY"),
model=model_name
)
elif provider == "anthropic":
return ChatAnthropic(
anthropic_api_key=os.getenv("ANTHROPIC_API_KEY"),
model=model_name
)
elif provider == "openrouter":
return ChatOpenAI(
openai_api_key=os.getenv("OPENROUTER_API_KEY"),
openai_api_base="https://openrouter.ai/api/v1",
model=model_name
)
elif provider == "openai-compatible":
api_key = os.getenv("OPENAI_API_KEY")
api_base = os.getenv("OPENAI_API_BASE")
if not api_key or not api_base:
raise ValueError("Both OPENAI_API_KEY and OPENAI_API_BASE environment variables must be set.")
return ChatOpenAI(
openai_api_key=api_key,
openai_api_base=api_base,
openai_api_key=os.getenv("OPENAI_API_KEY"),
openai_api_base=os.getenv("OPENAI_API_BASE"),
model=model_name
)
else:

View File

@ -42,7 +42,6 @@ def run_programming_task(input: RunProgrammingTaskInput) -> Dict[str, Union[str,
# Build command
command = [
"aider",
"--sonnet",
"--yes-always",
"--no-auto-commits",
"--dark-mode",