expert env validation
This commit is contained in:
parent
6c85d7fd6f
commit
e47b586c06
|
|
@ -15,8 +15,7 @@ from ra_aid.tools import (
|
|||
emit_research_notes, emit_plan, emit_related_files, emit_task,
|
||||
emit_expert_context, get_memory_value, emit_key_facts, delete_key_facts,
|
||||
emit_key_snippets, delete_key_snippets,
|
||||
request_implementation, read_file_tool, emit_research_subtask,
|
||||
fuzzy_find_project_files, ripgrep_search, list_directory_tree
|
||||
emit_research_subtask, request_implementation, read_file_tool, fuzzy_find_project_files, ripgrep_search, list_directory_tree
|
||||
)
|
||||
from ra_aid.tools.memory import _global_memory, get_related_files
|
||||
from ra_aid import print_agent_output, print_stage_header, print_task_header, print_error
|
||||
|
|
@ -103,21 +102,12 @@ research_memory = MemorySaver()
|
|||
planning_memory = MemorySaver()
|
||||
implementation_memory = MemorySaver()
|
||||
|
||||
def get_research_tools(research_only: bool = False) -> list:
|
||||
"""Get the list of research tools based on mode.
|
||||
|
||||
Args:
|
||||
research_only: If True, exclude implementation-related tools
|
||||
|
||||
Returns:
|
||||
List of available research tools
|
||||
"""
|
||||
def get_research_tools(research_only: bool = False, expert_enabled: bool = True, llm_enabled: bool = True) -> list:
|
||||
"""Get the list of research tools based on mode and availability."""
|
||||
tools = [
|
||||
list_directory_tree,
|
||||
emit_research_subtask,
|
||||
run_shell_command,
|
||||
emit_expert_context,
|
||||
ask_expert,
|
||||
emit_research_notes,
|
||||
emit_related_files,
|
||||
emit_key_facts,
|
||||
|
|
@ -129,55 +119,64 @@ def get_research_tools(research_only: bool = False) -> list:
|
|||
ripgrep_search
|
||||
]
|
||||
|
||||
if not research_only:
|
||||
if expert_enabled and llm_enabled:
|
||||
tools.append(emit_expert_context)
|
||||
tools.append(ask_expert)
|
||||
|
||||
if not research_only and llm_enabled:
|
||||
tools.append(request_implementation)
|
||||
|
||||
return tools
|
||||
|
||||
# Define tool sets for each stage
|
||||
planning_tools = [list_directory_tree, emit_expert_context, ask_expert, emit_plan, emit_task, emit_related_files, emit_key_facts, delete_key_facts, emit_key_snippets, delete_key_snippets, read_file_tool, fuzzy_find_project_files, ripgrep_search]
|
||||
implementation_tools = [list_directory_tree, run_shell_command, emit_expert_context, ask_expert, run_programming_task, emit_related_files, emit_key_facts, delete_key_facts, emit_key_snippets, delete_key_snippets, read_file_tool, fuzzy_find_project_files, ripgrep_search]
|
||||
def get_planning_tools(expert_enabled: bool = True, llm_enabled: bool = True) -> list:
|
||||
tools = [
|
||||
list_directory_tree,
|
||||
emit_plan,
|
||||
emit_task,
|
||||
emit_related_files,
|
||||
emit_key_facts,
|
||||
delete_key_facts,
|
||||
emit_key_snippets,
|
||||
delete_key_snippets,
|
||||
read_file_tool,
|
||||
fuzzy_find_project_files,
|
||||
ripgrep_search
|
||||
]
|
||||
if expert_enabled and llm_enabled:
|
||||
tools.append(ask_expert)
|
||||
tools.append(emit_expert_context)
|
||||
return tools
|
||||
|
||||
def get_implementation_tools(expert_enabled: bool = True, llm_enabled: bool = True) -> list:
|
||||
tools = [
|
||||
list_directory_tree,
|
||||
run_shell_command,
|
||||
run_programming_task,
|
||||
emit_related_files,
|
||||
emit_key_facts,
|
||||
delete_key_facts,
|
||||
emit_key_snippets,
|
||||
delete_key_snippets,
|
||||
read_file_tool,
|
||||
fuzzy_find_project_files,
|
||||
ripgrep_search
|
||||
]
|
||||
if expert_enabled and llm_enabled:
|
||||
tools.append(ask_expert)
|
||||
tools.append(emit_expert_context)
|
||||
return tools
|
||||
|
||||
def is_informational_query() -> bool:
|
||||
"""Determine if the current query is informational based on implementation_requested state.
|
||||
|
||||
Returns:
|
||||
bool: True if query is informational (no implementation requested), False otherwise
|
||||
"""
|
||||
# Check both the research_only flag and implementation_requested state
|
||||
return _global_memory.get('config', {}).get('research_only', False) or not is_stage_requested('implementation')
|
||||
|
||||
def is_stage_requested(stage: str) -> bool:
|
||||
"""Check if a stage has been requested to proceed.
|
||||
|
||||
Args:
|
||||
stage: The stage to check ('implementation')
|
||||
|
||||
Returns:
|
||||
True if the stage was requested, False otherwise
|
||||
"""
|
||||
if stage == 'implementation':
|
||||
return len(_global_memory.get('implementation_requested', [])) > 0
|
||||
return False
|
||||
|
||||
def run_agent_with_retry(agent, prompt: str, config: dict):
|
||||
"""Run an agent with retry logic for internal server errors.
|
||||
|
||||
Args:
|
||||
agent: The agent to run
|
||||
prompt: The prompt to send to the agent
|
||||
config: Configuration dictionary for the agent
|
||||
|
||||
Returns:
|
||||
None
|
||||
|
||||
Raises:
|
||||
TaskCompletedException: If the task is completed and should exit
|
||||
RuntimeError: If max retries exceeded
|
||||
"""
|
||||
max_retries = 20
|
||||
base_delay = 1 # Initial delay in seconds
|
||||
base_delay = 1
|
||||
|
||||
for attempt in range(max_retries):
|
||||
try:
|
||||
|
|
@ -191,21 +190,19 @@ def run_agent_with_retry(agent, prompt: str, config: dict):
|
|||
if attempt == max_retries - 1:
|
||||
raise RuntimeError(f"Max retries ({max_retries}) exceeded. Last error: {str(e)}")
|
||||
|
||||
delay = base_delay * (2 ** attempt) # Exponential backoff
|
||||
delay = base_delay * (2 ** attempt)
|
||||
error_type = e.__class__.__name__
|
||||
print_error(f"Encountered {error_type}: {str(e)}. Retrying in {delay} seconds... (Attempt {attempt + 1}/{max_retries})")
|
||||
time.sleep(delay)
|
||||
continue
|
||||
|
||||
def run_implementation_stage(base_task, tasks, plan, related_files, model):
|
||||
"""Run implementation stage with a distinct agent for each task."""
|
||||
def run_implementation_stage(base_task, tasks, plan, related_files, model, expert_enabled: bool, llm_enabled: bool):
|
||||
if not is_stage_requested('implementation'):
|
||||
print_stage_header("Implementation Stage Skipped")
|
||||
return
|
||||
|
||||
print_stage_header("Implementation Stage")
|
||||
|
||||
# Get tasks directly from memory instead of using get_memory_value which joins with newlines
|
||||
task_list = _global_memory['tasks']
|
||||
|
||||
print_task_header(f"Found {len(task_list)} tasks to implement")
|
||||
|
|
@ -213,13 +210,9 @@ def run_implementation_stage(base_task, tasks, plan, related_files, model):
|
|||
for i, task in enumerate(task_list, 1):
|
||||
print_task_header(task)
|
||||
|
||||
# Create a unique memory instance for this task
|
||||
task_memory = MemorySaver()
|
||||
task_agent = create_react_agent(model, get_implementation_tools(expert_enabled=expert_enabled, llm_enabled=llm_enabled), checkpointer=task_memory)
|
||||
|
||||
# Create a fresh agent for each task with its own memory
|
||||
task_agent = create_react_agent(model, implementation_tools, checkpointer=task_memory)
|
||||
|
||||
# Construct task-specific prompt
|
||||
task_prompt = IMPLEMENTATION_PROMPT.format(
|
||||
plan=plan,
|
||||
key_facts=get_memory_value('key_facts'),
|
||||
|
|
@ -229,29 +222,27 @@ def run_implementation_stage(base_task, tasks, plan, related_files, model):
|
|||
base_task=base_task
|
||||
)
|
||||
|
||||
# Run agent for this task
|
||||
if llm_enabled:
|
||||
run_agent_with_retry(task_agent, task_prompt, {"configurable": {"thread_id": "abc123"}, "recursion_limit": 100})
|
||||
else:
|
||||
console.print(Panel("[yellow]LLM is disabled, cannot implement tasks[/yellow]", title="No LLM Available"))
|
||||
|
||||
|
||||
def run_research_subtasks(base_task: str, config: dict, model):
|
||||
"""Run research subtasks with separate agents."""
|
||||
def run_research_subtasks(base_task: str, config: dict, model, expert_enabled: bool, llm_enabled: bool):
|
||||
subtasks = _global_memory.get('research_subtasks', [])
|
||||
if not subtasks:
|
||||
return
|
||||
|
||||
print_stage_header("Research Subtasks")
|
||||
|
||||
# Get tools for subtask agents (excluding research subtask and implementation tools)
|
||||
research_only = _global_memory.get('config', {}).get('research_only', False)
|
||||
subtask_tools = [
|
||||
tool for tool in get_research_tools(research_only=research_only)
|
||||
if tool.name not in ['emit_research_subtask']
|
||||
t for t in get_research_tools(research_only=research_only, expert_enabled=expert_enabled, llm_enabled=llm_enabled)
|
||||
if t.name not in ['emit_research_subtask']
|
||||
]
|
||||
|
||||
for i, subtask in enumerate(subtasks, 1):
|
||||
print_task_header(f"Research Subtask {i}/{len(subtasks)}")
|
||||
|
||||
# Create fresh memory and agent for each subtask
|
||||
subtask_memory = MemorySaver()
|
||||
subtask_agent = create_react_agent(
|
||||
model,
|
||||
|
|
@ -259,22 +250,19 @@ def run_research_subtasks(base_task: str, config: dict, model):
|
|||
checkpointer=subtask_memory
|
||||
)
|
||||
|
||||
# Run the subtask agent
|
||||
subtask_prompt = f"Research Subtask: {subtask}\n\n{RESEARCH_PROMPT}"
|
||||
run_agent_with_retry(subtask_agent, subtask_prompt, config)
|
||||
|
||||
if llm_enabled:
|
||||
run_agent_with_retry(subtask_agent, subtask_prompt, config)
|
||||
else:
|
||||
console.print(Panel("[yellow]LLM is disabled, cannot perform LLM-based research[/yellow]", title="No LLM Available"))
|
||||
|
||||
def validate_environment(args):
|
||||
"""Validate required environment variables and dependencies.
|
||||
|
||||
Args:
|
||||
args: The parsed command line arguments
|
||||
"""
|
||||
missing = []
|
||||
provider = args.provider
|
||||
expert_provider = args.expert_provider
|
||||
|
||||
# Check API keys based on provider
|
||||
# Main provider keys
|
||||
if provider == "anthropic":
|
||||
if not os.environ.get('ANTHROPIC_API_KEY'):
|
||||
missing.append('ANTHROPIC_API_KEY environment variable is not set')
|
||||
|
|
@ -290,49 +278,73 @@ def validate_environment(args):
|
|||
if not os.environ.get('OPENAI_API_BASE'):
|
||||
missing.append('OPENAI_API_BASE environment variable is not set')
|
||||
|
||||
# Check expert provider keys with fallback to regular keys if providers match
|
||||
# Expert keys
|
||||
expert_missing = []
|
||||
if expert_provider == "anthropic":
|
||||
expert_key_missing = not os.environ.get('EXPERT_ANTHROPIC_API_KEY')
|
||||
fallback_available = expert_provider == provider and os.environ.get('ANTHROPIC_API_KEY')
|
||||
if expert_key_missing and not fallback_available:
|
||||
missing.append('EXPERT_ANTHROPIC_API_KEY environment variable is not set')
|
||||
expert_missing.append('EXPERT_ANTHROPIC_API_KEY environment variable is not set')
|
||||
elif expert_provider == "openai":
|
||||
expert_key_missing = not os.environ.get('EXPERT_OPENAI_API_KEY')
|
||||
fallback_available = expert_provider == provider and os.environ.get('OPENAI_API_KEY')
|
||||
if expert_key_missing and not fallback_available:
|
||||
missing.append('EXPERT_OPENAI_API_KEY environment variable is not set')
|
||||
expert_missing.append('EXPERT_OPENAI_API_KEY environment variable is not set')
|
||||
elif expert_provider == "openrouter":
|
||||
expert_key_missing = not os.environ.get('EXPERT_OPENROUTER_API_KEY')
|
||||
fallback_available = expert_provider == provider and os.environ.get('OPENROUTER_API_KEY')
|
||||
if expert_key_missing and not fallback_available:
|
||||
missing.append('EXPERT_OPENROUTER_API_KEY environment variable is not set')
|
||||
expert_missing.append('EXPERT_OPENROUTER_API_KEY environment variable is not set')
|
||||
elif expert_provider == "openai-compatible":
|
||||
expert_key_missing = not os.environ.get('EXPERT_OPENAI_API_KEY')
|
||||
fallback_available = expert_provider == provider and os.environ.get('OPENAI_API_KEY')
|
||||
if expert_key_missing and not fallback_available:
|
||||
missing.append('EXPERT_OPENAI_API_KEY environment variable is not set')
|
||||
expert_missing.append('EXPERT_OPENAI_API_KEY environment variable is not set')
|
||||
expert_base_missing = not os.environ.get('EXPERT_OPENAI_API_BASE')
|
||||
base_fallback_available = expert_provider == provider and os.environ.get('OPENAI_API_BASE')
|
||||
if expert_base_missing and not base_fallback_available:
|
||||
missing.append('EXPERT_OPENAI_API_BASE environment variable is not set')
|
||||
expert_missing.append('EXPERT_OPENAI_API_BASE environment variable is not set')
|
||||
|
||||
# If main keys missing, just disable LLM entirely
|
||||
llm_enabled = True
|
||||
if missing:
|
||||
print_error("Missing required dependencies:")
|
||||
for item in missing:
|
||||
print_error(f"- {item}")
|
||||
sys.exit(1)
|
||||
llm_enabled = False
|
||||
|
||||
# If expert keys missing, disable expert
|
||||
expert_enabled = True
|
||||
if expert_missing:
|
||||
expert_enabled = False
|
||||
|
||||
return llm_enabled, expert_enabled, missing, expert_missing
|
||||
|
||||
def main():
|
||||
"""Main entry point for the ra-aid command line tool."""
|
||||
try:
|
||||
try:
|
||||
args = parse_arguments()
|
||||
validate_environment(args) # Will exit if env vars missing
|
||||
llm_enabled, expert_enabled, missing, expert_missing = validate_environment(args)
|
||||
|
||||
# Create the base model after validation
|
||||
model = initialize_llm(args.provider, args.model)
|
||||
# If main LLM keys missing
|
||||
if missing:
|
||||
# Disable LLM completely
|
||||
console.print(Panel(
|
||||
f"[yellow]LLM disabled due to missing main provider configuration:[/yellow]\n" +
|
||||
"\n".join(f"- {m}" for m in missing) +
|
||||
"\nSet the required environment variables to enable LLM features.",
|
||||
title="LLM Disabled",
|
||||
style="yellow"
|
||||
))
|
||||
|
||||
# Validate message is provided
|
||||
# If expert keys missing
|
||||
if expert_missing:
|
||||
console.print(Panel(
|
||||
f"[yellow]Expert tools disabled due to missing configuration:[/yellow]\n" +
|
||||
"\n".join(f"- {m}" for m in expert_missing) +
|
||||
"\nSet the required environment variables or args to enable expert mode.",
|
||||
title="Expert Tools Disabled",
|
||||
style="yellow"
|
||||
))
|
||||
|
||||
# If no message, exit
|
||||
if not args.message:
|
||||
print_error("--message is required")
|
||||
sys.exit(1)
|
||||
|
|
@ -347,20 +359,28 @@ def main():
|
|||
"cowboy_mode": args.cowboy_mode
|
||||
}
|
||||
|
||||
# Store config in global memory for access by is_informational_query
|
||||
_global_memory['config'] = config
|
||||
|
||||
# Store expert provider and model in config
|
||||
_global_memory['config']['expert_provider'] = args.expert_provider
|
||||
_global_memory['config']['expert_model'] = args.expert_model
|
||||
|
||||
# Run research stage
|
||||
# Only initialize the model if LLM is enabled
|
||||
model = None
|
||||
if llm_enabled:
|
||||
model = initialize_llm(args.provider, args.model)
|
||||
|
||||
print_stage_header("Research Stage")
|
||||
|
||||
# Create research agent with local model
|
||||
research_tools = get_research_tools(
|
||||
research_only=_global_memory.get('config', {}).get('research_only', False),
|
||||
expert_enabled=expert_enabled,
|
||||
llm_enabled=llm_enabled
|
||||
)
|
||||
|
||||
# If no LLM, we can't run the agent, just print a message
|
||||
if llm_enabled:
|
||||
research_agent = create_react_agent(
|
||||
model,
|
||||
get_research_tools(research_only=_global_memory.get('config', {}).get('research_only', False)),
|
||||
research_tools,
|
||||
checkpointer=research_memory
|
||||
)
|
||||
|
||||
|
|
@ -369,23 +389,22 @@ def main():
|
|||
{RESEARCH_PROMPT}
|
||||
|
||||
Be very thorough in your research and emit lots of snippets, key facts. If you take more than a few steps, be eager to emit research subtasks.{'' if args.research_only else ' Only request implementation if the user explicitly asked for changes to be made.'}"""
|
||||
|
||||
try:
|
||||
run_agent_with_retry(research_agent, research_prompt, config)
|
||||
except TaskCompletedException as e:
|
||||
print_stage_header("Task Completed")
|
||||
raise # Re-raise to be caught by outer handler
|
||||
raise
|
||||
else:
|
||||
console.print(Panel("[yellow]LLM is disabled, cannot perform LLM-based research[/yellow]", title="No LLM Available"))
|
||||
|
||||
# Run any research subtasks
|
||||
run_research_subtasks(base_task, config, model)
|
||||
run_research_subtasks(base_task, config, model, expert_enabled=expert_enabled, llm_enabled=llm_enabled)
|
||||
|
||||
# Proceed with planning and implementation if not an informational query
|
||||
if not is_informational_query():
|
||||
print_stage_header("Planning Stage")
|
||||
planning_tools = get_planning_tools(expert_enabled=expert_enabled, llm_enabled=llm_enabled)
|
||||
|
||||
# Create planning agent
|
||||
if llm_enabled:
|
||||
planning_agent = create_react_agent(model, planning_tools, checkpointer=planning_memory)
|
||||
|
||||
planning_prompt = PLANNING_PROMPT.format(
|
||||
research_notes=get_memory_value('research_notes'),
|
||||
key_facts=get_memory_value('key_facts'),
|
||||
|
|
@ -393,17 +412,18 @@ Be very thorough in your research and emit lots of snippets, key facts. If you t
|
|||
base_task=base_task,
|
||||
related_files="\n".join(get_related_files())
|
||||
)
|
||||
|
||||
# Run planning agent
|
||||
run_agent_with_retry(planning_agent, planning_prompt, config)
|
||||
else:
|
||||
console.print(Panel("[yellow]LLM is disabled, cannot perform planning[/yellow]", title="No LLM Available"))
|
||||
|
||||
# Run implementation stage with task-specific agents
|
||||
run_implementation_stage(
|
||||
base_task,
|
||||
get_memory_value('tasks'),
|
||||
get_memory_value('plan'),
|
||||
get_related_files(),
|
||||
model
|
||||
model,
|
||||
expert_enabled=expert_enabled,
|
||||
llm_enabled=llm_enabled
|
||||
)
|
||||
except TaskCompletedException:
|
||||
sys.exit(0)
|
||||
|
|
|
|||
Loading…
Reference in New Issue