RA.Aid/ra_aid/__main__.py

435 lines
17 KiB
Python

import sqlite3
import argparse
import glob
import os
import sys
import shutil
from rich.panel import Panel
from rich.console import Console
from langchain_anthropic import ChatAnthropic
from langchain_core.messages import HumanMessage
from langgraph.checkpoint.memory import MemorySaver
from langgraph.prebuilt import create_react_agent
from ra_aid.tools import (
ask_expert, run_shell_command, run_programming_task,
emit_research_notes, emit_plan, emit_related_files, emit_task,
emit_expert_context, get_memory_value, emit_key_facts, delete_key_facts,
emit_key_snippets, delete_key_snippets,
emit_research_subtask, request_implementation, read_file_tool, fuzzy_find_project_files, ripgrep_search, list_directory_tree
)
from ra_aid.tools.memory import _global_memory, get_related_files
from ra_aid import print_agent_output, print_stage_header, print_task_header, print_error
from ra_aid.prompts import (
RESEARCH_PROMPT,
PLANNING_PROMPT,
IMPLEMENTATION_PROMPT,
)
from ra_aid.exceptions import TaskCompletedException
import time
from anthropic import APIError, APITimeoutError, RateLimitError, InternalServerError
from ra_aid.llm import initialize_llm
def parse_arguments():
parser = argparse.ArgumentParser(
description='RA.Aid - AI Agent for executing programming and research tasks',
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog='''
Examples:
ra-aid -m "Add error handling to the database module"
ra-aid -m "Explain the authentication flow" --research-only
'''
)
parser.add_argument(
'-m', '--message',
type=str,
help='The task or query to be executed by the agent'
)
parser.add_argument(
'--research-only',
action='store_true',
help='Only perform research without implementation'
)
parser.add_argument(
'--provider',
type=str,
default='anthropic',
choices=['anthropic', 'openai', 'openrouter', 'openai-compatible'],
help='The LLM provider to use'
)
parser.add_argument(
'--model',
type=str,
help='The model name to use (required for non-Anthropic providers)'
)
parser.add_argument(
'--cowboy-mode',
action='store_true',
help='Skip interactive approval for shell commands'
)
parser.add_argument(
'--expert-provider',
type=str,
default='openai',
choices=['anthropic', 'openai', 'openrouter', 'openai-compatible'],
help='The LLM provider to use for expert knowledge queries (default: openai)'
)
parser.add_argument(
'--expert-model',
type=str,
help='The model name to use for expert knowledge queries (required for non-OpenAI providers)'
)
args = parser.parse_args()
# Set default model for Anthropic, require model for other providers
if args.provider == 'anthropic':
if not args.model:
args.model = 'claude-3-5-sonnet-20241022'
elif not args.model:
parser.error(f"--model is required when using provider '{args.provider}'")
# Validate expert model requirement
if args.expert_provider != 'openai' and not args.expert_model:
parser.error(f"--expert-model is required when using expert provider '{args.expert_provider}'")
return args
# Create console instance
console = Console()
# Create individual memory objects for each agent
research_memory = MemorySaver()
planning_memory = MemorySaver()
implementation_memory = MemorySaver()
def get_research_tools(research_only: bool = False, expert_enabled: bool = True, llm_enabled: bool = True) -> list:
"""Get the list of research tools based on mode and availability."""
tools = [
list_directory_tree,
emit_research_subtask,
run_shell_command,
emit_research_notes,
emit_related_files,
emit_key_facts,
delete_key_facts,
emit_key_snippets,
delete_key_snippets,
read_file_tool,
fuzzy_find_project_files,
ripgrep_search
]
if expert_enabled and llm_enabled:
tools.append(emit_expert_context)
tools.append(ask_expert)
if not research_only and llm_enabled:
tools.append(request_implementation)
return tools
def get_planning_tools(expert_enabled: bool = True, llm_enabled: bool = True) -> list:
tools = [
list_directory_tree,
emit_plan,
emit_task,
emit_related_files,
emit_key_facts,
delete_key_facts,
emit_key_snippets,
delete_key_snippets,
read_file_tool,
fuzzy_find_project_files,
ripgrep_search
]
if expert_enabled and llm_enabled:
tools.append(ask_expert)
tools.append(emit_expert_context)
return tools
def get_implementation_tools(expert_enabled: bool = True, llm_enabled: bool = True) -> list:
tools = [
list_directory_tree,
run_shell_command,
run_programming_task,
emit_related_files,
emit_key_facts,
delete_key_facts,
emit_key_snippets,
delete_key_snippets,
read_file_tool,
fuzzy_find_project_files,
ripgrep_search
]
if expert_enabled and llm_enabled:
tools.append(ask_expert)
tools.append(emit_expert_context)
return tools
def is_informational_query() -> bool:
return _global_memory.get('config', {}).get('research_only', False) or not is_stage_requested('implementation')
def is_stage_requested(stage: str) -> bool:
if stage == 'implementation':
return len(_global_memory.get('implementation_requested', [])) > 0
return False
def run_agent_with_retry(agent, prompt: str, config: dict):
max_retries = 20
base_delay = 1
for attempt in range(max_retries):
try:
for chunk in agent.stream(
{"messages": [HumanMessage(content=prompt)]},
config
):
print_agent_output(chunk)
break
except (InternalServerError, APITimeoutError, RateLimitError, APIError) as e:
if attempt == max_retries - 1:
raise RuntimeError(f"Max retries ({max_retries}) exceeded. Last error: {str(e)}")
delay = base_delay * (2 ** attempt)
error_type = e.__class__.__name__
print_error(f"Encountered {error_type}: {str(e)}. Retrying in {delay} seconds... (Attempt {attempt + 1}/{max_retries})")
time.sleep(delay)
continue
def run_implementation_stage(base_task, tasks, plan, related_files, model, expert_enabled: bool, llm_enabled: bool):
if not is_stage_requested('implementation'):
print_stage_header("Implementation Stage Skipped")
return
print_stage_header("Implementation Stage")
task_list = _global_memory['tasks']
print_task_header(f"Found {len(task_list)} tasks to implement")
for i, task in enumerate(task_list, 1):
print_task_header(task)
task_memory = MemorySaver()
task_agent = create_react_agent(model, get_implementation_tools(expert_enabled=expert_enabled, llm_enabled=llm_enabled), checkpointer=task_memory)
task_prompt = IMPLEMENTATION_PROMPT.format(
plan=plan,
key_facts=get_memory_value('key_facts'),
key_snippets=get_memory_value('key_snippets'),
task=task,
related_files="\n".join(related_files),
base_task=base_task
)
if llm_enabled:
run_agent_with_retry(task_agent, task_prompt, {"configurable": {"thread_id": "abc123"}, "recursion_limit": 100})
else:
console.print(Panel("[yellow]LLM is disabled, cannot implement tasks[/yellow]", title="No LLM Available"))
def run_research_subtasks(base_task: str, config: dict, model, expert_enabled: bool, llm_enabled: bool):
subtasks = _global_memory.get('research_subtasks', [])
if not subtasks:
return
print_stage_header("Research Subtasks")
research_only = _global_memory.get('config', {}).get('research_only', False)
subtask_tools = [
t for t in get_research_tools(research_only=research_only, expert_enabled=expert_enabled, llm_enabled=llm_enabled)
if t.name not in ['emit_research_subtask']
]
for i, subtask in enumerate(subtasks, 1):
print_task_header(f"Research Subtask {i}/{len(subtasks)}")
subtask_memory = MemorySaver()
subtask_agent = create_react_agent(
model,
subtask_tools,
checkpointer=subtask_memory
)
subtask_prompt = f"Research Subtask: {subtask}\n\n{RESEARCH_PROMPT}"
if llm_enabled:
run_agent_with_retry(subtask_agent, subtask_prompt, config)
else:
console.print(Panel("[yellow]LLM is disabled, cannot perform LLM-based research[/yellow]", title="No LLM Available"))
def validate_environment(args):
missing = []
provider = args.provider
expert_provider = args.expert_provider
# Main provider keys
if provider == "anthropic":
if not os.environ.get('ANTHROPIC_API_KEY'):
missing.append('ANTHROPIC_API_KEY environment variable is not set')
elif provider == "openai":
if not os.environ.get('OPENAI_API_KEY'):
missing.append('OPENAI_API_KEY environment variable is not set')
elif provider == "openrouter":
if not os.environ.get('OPENROUTER_API_KEY'):
missing.append('OPENROUTER_API_KEY environment variable is not set')
elif provider == "openai-compatible":
if not os.environ.get('OPENAI_API_KEY'):
missing.append('OPENAI_API_KEY environment variable is not set')
if not os.environ.get('OPENAI_API_BASE'):
missing.append('OPENAI_API_BASE environment variable is not set')
# Expert keys
expert_missing = []
if expert_provider == "anthropic":
expert_key_missing = not os.environ.get('EXPERT_ANTHROPIC_API_KEY')
fallback_available = expert_provider == provider and os.environ.get('ANTHROPIC_API_KEY')
if expert_key_missing and not fallback_available:
expert_missing.append('EXPERT_ANTHROPIC_API_KEY environment variable is not set')
elif expert_provider == "openai":
expert_key_missing = not os.environ.get('EXPERT_OPENAI_API_KEY')
fallback_available = expert_provider == provider and os.environ.get('OPENAI_API_KEY')
if expert_key_missing and not fallback_available:
expert_missing.append('EXPERT_OPENAI_API_KEY environment variable is not set')
elif expert_provider == "openrouter":
expert_key_missing = not os.environ.get('EXPERT_OPENROUTER_API_KEY')
fallback_available = expert_provider == provider and os.environ.get('OPENROUTER_API_KEY')
if expert_key_missing and not fallback_available:
expert_missing.append('EXPERT_OPENROUTER_API_KEY environment variable is not set')
elif expert_provider == "openai-compatible":
expert_key_missing = not os.environ.get('EXPERT_OPENAI_API_KEY')
fallback_available = expert_provider == provider and os.environ.get('OPENAI_API_KEY')
if expert_key_missing and not fallback_available:
expert_missing.append('EXPERT_OPENAI_API_KEY environment variable is not set')
expert_base_missing = not os.environ.get('EXPERT_OPENAI_API_BASE')
base_fallback_available = expert_provider == provider and os.environ.get('OPENAI_API_BASE')
if expert_base_missing and not base_fallback_available:
expert_missing.append('EXPERT_OPENAI_API_BASE environment variable is not set')
# If main keys missing, just disable LLM entirely
llm_enabled = True
if missing:
llm_enabled = False
# If expert keys missing, disable expert
expert_enabled = True
if expert_missing:
expert_enabled = False
return llm_enabled, expert_enabled, missing, expert_missing
def main():
try:
try:
args = parse_arguments()
llm_enabled, expert_enabled, missing, expert_missing = validate_environment(args)
# If main LLM keys missing
if missing:
# Disable LLM completely
console.print(Panel(
f"[yellow]LLM disabled due to missing main provider configuration:[/yellow]\n" +
"\n".join(f"- {m}" for m in missing) +
"\nSet the required environment variables to enable LLM features.",
title="LLM Disabled",
style="yellow"
))
# If expert keys missing
if expert_missing:
console.print(Panel(
f"[yellow]Expert tools disabled due to missing configuration:[/yellow]\n" +
"\n".join(f"- {m}" for m in expert_missing) +
"\nSet the required environment variables or args to enable expert mode.",
title="Expert Tools Disabled",
style="yellow"
))
# If no message, exit
if not args.message:
print_error("--message is required")
sys.exit(1)
base_task = args.message
config = {
"configurable": {
"thread_id": "abc123"
},
"recursion_limit": 100,
"research_only": args.research_only,
"cowboy_mode": args.cowboy_mode
}
_global_memory['config'] = config
_global_memory['config']['expert_provider'] = args.expert_provider
_global_memory['config']['expert_model'] = args.expert_model
# Only initialize the model if LLM is enabled
model = None
if llm_enabled:
model = initialize_llm(args.provider, args.model)
print_stage_header("Research Stage")
research_tools = get_research_tools(
research_only=_global_memory.get('config', {}).get('research_only', False),
expert_enabled=expert_enabled,
llm_enabled=llm_enabled
)
# If no LLM, we can't run the agent, just print a message
if llm_enabled:
research_agent = create_react_agent(
model,
research_tools,
checkpointer=research_memory
)
research_prompt = f"""User query: {base_task} --keep it simple
{RESEARCH_PROMPT}
Be very thorough in your research and emit lots of snippets, key facts. If you take more than a few steps, be eager to emit research subtasks.{'' if args.research_only else ' Only request implementation if the user explicitly asked for changes to be made.'}"""
try:
run_agent_with_retry(research_agent, research_prompt, config)
except TaskCompletedException as e:
print_stage_header("Task Completed")
raise
else:
console.print(Panel("[yellow]LLM is disabled, cannot perform LLM-based research[/yellow]", title="No LLM Available"))
run_research_subtasks(base_task, config, model, expert_enabled=expert_enabled, llm_enabled=llm_enabled)
if not is_informational_query():
print_stage_header("Planning Stage")
planning_tools = get_planning_tools(expert_enabled=expert_enabled, llm_enabled=llm_enabled)
if llm_enabled:
planning_agent = create_react_agent(model, planning_tools, checkpointer=planning_memory)
planning_prompt = PLANNING_PROMPT.format(
research_notes=get_memory_value('research_notes'),
key_facts=get_memory_value('key_facts'),
key_snippets=get_memory_value('key_snippets'),
base_task=base_task,
related_files="\n".join(get_related_files())
)
run_agent_with_retry(planning_agent, planning_prompt, config)
else:
console.print(Panel("[yellow]LLM is disabled, cannot perform planning[/yellow]", title="No LLM Available"))
run_implementation_stage(
base_task,
get_memory_value('tasks'),
get_memory_value('plan'),
get_related_files(),
model,
expert_enabled=expert_enabled,
llm_enabled=llm_enabled
)
except TaskCompletedException:
sys.exit(0)
finally:
pass
if __name__ == "__main__":
main()