435 lines
17 KiB
Python
435 lines
17 KiB
Python
import sqlite3
|
|
import argparse
|
|
import glob
|
|
import os
|
|
import sys
|
|
import shutil
|
|
from rich.panel import Panel
|
|
from rich.console import Console
|
|
from langchain_anthropic import ChatAnthropic
|
|
from langchain_core.messages import HumanMessage
|
|
from langgraph.checkpoint.memory import MemorySaver
|
|
from langgraph.prebuilt import create_react_agent
|
|
from ra_aid.tools import (
|
|
ask_expert, run_shell_command, run_programming_task,
|
|
emit_research_notes, emit_plan, emit_related_files, emit_task,
|
|
emit_expert_context, get_memory_value, emit_key_facts, delete_key_facts,
|
|
emit_key_snippets, delete_key_snippets,
|
|
emit_research_subtask, request_implementation, read_file_tool, fuzzy_find_project_files, ripgrep_search, list_directory_tree
|
|
)
|
|
from ra_aid.tools.memory import _global_memory, get_related_files
|
|
from ra_aid import print_agent_output, print_stage_header, print_task_header, print_error
|
|
from ra_aid.prompts import (
|
|
RESEARCH_PROMPT,
|
|
PLANNING_PROMPT,
|
|
IMPLEMENTATION_PROMPT,
|
|
)
|
|
from ra_aid.exceptions import TaskCompletedException
|
|
import time
|
|
from anthropic import APIError, APITimeoutError, RateLimitError, InternalServerError
|
|
from ra_aid.llm import initialize_llm
|
|
|
|
def parse_arguments():
|
|
parser = argparse.ArgumentParser(
|
|
description='RA.Aid - AI Agent for executing programming and research tasks',
|
|
formatter_class=argparse.RawDescriptionHelpFormatter,
|
|
epilog='''
|
|
Examples:
|
|
ra-aid -m "Add error handling to the database module"
|
|
ra-aid -m "Explain the authentication flow" --research-only
|
|
'''
|
|
)
|
|
parser.add_argument(
|
|
'-m', '--message',
|
|
type=str,
|
|
help='The task or query to be executed by the agent'
|
|
)
|
|
parser.add_argument(
|
|
'--research-only',
|
|
action='store_true',
|
|
help='Only perform research without implementation'
|
|
)
|
|
parser.add_argument(
|
|
'--provider',
|
|
type=str,
|
|
default='anthropic',
|
|
choices=['anthropic', 'openai', 'openrouter', 'openai-compatible'],
|
|
help='The LLM provider to use'
|
|
)
|
|
parser.add_argument(
|
|
'--model',
|
|
type=str,
|
|
help='The model name to use (required for non-Anthropic providers)'
|
|
)
|
|
parser.add_argument(
|
|
'--cowboy-mode',
|
|
action='store_true',
|
|
help='Skip interactive approval for shell commands'
|
|
)
|
|
parser.add_argument(
|
|
'--expert-provider',
|
|
type=str,
|
|
default='openai',
|
|
choices=['anthropic', 'openai', 'openrouter', 'openai-compatible'],
|
|
help='The LLM provider to use for expert knowledge queries (default: openai)'
|
|
)
|
|
parser.add_argument(
|
|
'--expert-model',
|
|
type=str,
|
|
help='The model name to use for expert knowledge queries (required for non-OpenAI providers)'
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
# Set default model for Anthropic, require model for other providers
|
|
if args.provider == 'anthropic':
|
|
if not args.model:
|
|
args.model = 'claude-3-5-sonnet-20241022'
|
|
elif not args.model:
|
|
parser.error(f"--model is required when using provider '{args.provider}'")
|
|
|
|
# Validate expert model requirement
|
|
if args.expert_provider != 'openai' and not args.expert_model:
|
|
parser.error(f"--expert-model is required when using expert provider '{args.expert_provider}'")
|
|
|
|
return args
|
|
|
|
# Create console instance
|
|
console = Console()
|
|
|
|
# Create individual memory objects for each agent
|
|
research_memory = MemorySaver()
|
|
planning_memory = MemorySaver()
|
|
implementation_memory = MemorySaver()
|
|
|
|
def get_research_tools(research_only: bool = False, expert_enabled: bool = True, llm_enabled: bool = True) -> list:
|
|
"""Get the list of research tools based on mode and availability."""
|
|
tools = [
|
|
list_directory_tree,
|
|
emit_research_subtask,
|
|
run_shell_command,
|
|
emit_research_notes,
|
|
emit_related_files,
|
|
emit_key_facts,
|
|
delete_key_facts,
|
|
emit_key_snippets,
|
|
delete_key_snippets,
|
|
read_file_tool,
|
|
fuzzy_find_project_files,
|
|
ripgrep_search
|
|
]
|
|
|
|
if expert_enabled and llm_enabled:
|
|
tools.append(emit_expert_context)
|
|
tools.append(ask_expert)
|
|
|
|
if not research_only and llm_enabled:
|
|
tools.append(request_implementation)
|
|
|
|
return tools
|
|
|
|
def get_planning_tools(expert_enabled: bool = True, llm_enabled: bool = True) -> list:
|
|
tools = [
|
|
list_directory_tree,
|
|
emit_plan,
|
|
emit_task,
|
|
emit_related_files,
|
|
emit_key_facts,
|
|
delete_key_facts,
|
|
emit_key_snippets,
|
|
delete_key_snippets,
|
|
read_file_tool,
|
|
fuzzy_find_project_files,
|
|
ripgrep_search
|
|
]
|
|
if expert_enabled and llm_enabled:
|
|
tools.append(ask_expert)
|
|
tools.append(emit_expert_context)
|
|
return tools
|
|
|
|
def get_implementation_tools(expert_enabled: bool = True, llm_enabled: bool = True) -> list:
|
|
tools = [
|
|
list_directory_tree,
|
|
run_shell_command,
|
|
run_programming_task,
|
|
emit_related_files,
|
|
emit_key_facts,
|
|
delete_key_facts,
|
|
emit_key_snippets,
|
|
delete_key_snippets,
|
|
read_file_tool,
|
|
fuzzy_find_project_files,
|
|
ripgrep_search
|
|
]
|
|
if expert_enabled and llm_enabled:
|
|
tools.append(ask_expert)
|
|
tools.append(emit_expert_context)
|
|
return tools
|
|
|
|
def is_informational_query() -> bool:
|
|
return _global_memory.get('config', {}).get('research_only', False) or not is_stage_requested('implementation')
|
|
|
|
def is_stage_requested(stage: str) -> bool:
|
|
if stage == 'implementation':
|
|
return len(_global_memory.get('implementation_requested', [])) > 0
|
|
return False
|
|
|
|
def run_agent_with_retry(agent, prompt: str, config: dict):
|
|
max_retries = 20
|
|
base_delay = 1
|
|
|
|
for attempt in range(max_retries):
|
|
try:
|
|
for chunk in agent.stream(
|
|
{"messages": [HumanMessage(content=prompt)]},
|
|
config
|
|
):
|
|
print_agent_output(chunk)
|
|
break
|
|
except (InternalServerError, APITimeoutError, RateLimitError, APIError) as e:
|
|
if attempt == max_retries - 1:
|
|
raise RuntimeError(f"Max retries ({max_retries}) exceeded. Last error: {str(e)}")
|
|
|
|
delay = base_delay * (2 ** attempt)
|
|
error_type = e.__class__.__name__
|
|
print_error(f"Encountered {error_type}: {str(e)}. Retrying in {delay} seconds... (Attempt {attempt + 1}/{max_retries})")
|
|
time.sleep(delay)
|
|
continue
|
|
|
|
def run_implementation_stage(base_task, tasks, plan, related_files, model, expert_enabled: bool, llm_enabled: bool):
|
|
if not is_stage_requested('implementation'):
|
|
print_stage_header("Implementation Stage Skipped")
|
|
return
|
|
|
|
print_stage_header("Implementation Stage")
|
|
|
|
task_list = _global_memory['tasks']
|
|
|
|
print_task_header(f"Found {len(task_list)} tasks to implement")
|
|
|
|
for i, task in enumerate(task_list, 1):
|
|
print_task_header(task)
|
|
|
|
task_memory = MemorySaver()
|
|
task_agent = create_react_agent(model, get_implementation_tools(expert_enabled=expert_enabled, llm_enabled=llm_enabled), checkpointer=task_memory)
|
|
|
|
task_prompt = IMPLEMENTATION_PROMPT.format(
|
|
plan=plan,
|
|
key_facts=get_memory_value('key_facts'),
|
|
key_snippets=get_memory_value('key_snippets'),
|
|
task=task,
|
|
related_files="\n".join(related_files),
|
|
base_task=base_task
|
|
)
|
|
|
|
if llm_enabled:
|
|
run_agent_with_retry(task_agent, task_prompt, {"configurable": {"thread_id": "abc123"}, "recursion_limit": 100})
|
|
else:
|
|
console.print(Panel("[yellow]LLM is disabled, cannot implement tasks[/yellow]", title="No LLM Available"))
|
|
|
|
def run_research_subtasks(base_task: str, config: dict, model, expert_enabled: bool, llm_enabled: bool):
|
|
subtasks = _global_memory.get('research_subtasks', [])
|
|
if not subtasks:
|
|
return
|
|
|
|
print_stage_header("Research Subtasks")
|
|
|
|
research_only = _global_memory.get('config', {}).get('research_only', False)
|
|
subtask_tools = [
|
|
t for t in get_research_tools(research_only=research_only, expert_enabled=expert_enabled, llm_enabled=llm_enabled)
|
|
if t.name not in ['emit_research_subtask']
|
|
]
|
|
|
|
for i, subtask in enumerate(subtasks, 1):
|
|
print_task_header(f"Research Subtask {i}/{len(subtasks)}")
|
|
|
|
subtask_memory = MemorySaver()
|
|
subtask_agent = create_react_agent(
|
|
model,
|
|
subtask_tools,
|
|
checkpointer=subtask_memory
|
|
)
|
|
|
|
subtask_prompt = f"Research Subtask: {subtask}\n\n{RESEARCH_PROMPT}"
|
|
|
|
if llm_enabled:
|
|
run_agent_with_retry(subtask_agent, subtask_prompt, config)
|
|
else:
|
|
console.print(Panel("[yellow]LLM is disabled, cannot perform LLM-based research[/yellow]", title="No LLM Available"))
|
|
|
|
def validate_environment(args):
|
|
missing = []
|
|
provider = args.provider
|
|
expert_provider = args.expert_provider
|
|
|
|
# Main provider keys
|
|
if provider == "anthropic":
|
|
if not os.environ.get('ANTHROPIC_API_KEY'):
|
|
missing.append('ANTHROPIC_API_KEY environment variable is not set')
|
|
elif provider == "openai":
|
|
if not os.environ.get('OPENAI_API_KEY'):
|
|
missing.append('OPENAI_API_KEY environment variable is not set')
|
|
elif provider == "openrouter":
|
|
if not os.environ.get('OPENROUTER_API_KEY'):
|
|
missing.append('OPENROUTER_API_KEY environment variable is not set')
|
|
elif provider == "openai-compatible":
|
|
if not os.environ.get('OPENAI_API_KEY'):
|
|
missing.append('OPENAI_API_KEY environment variable is not set')
|
|
if not os.environ.get('OPENAI_API_BASE'):
|
|
missing.append('OPENAI_API_BASE environment variable is not set')
|
|
|
|
# Expert keys
|
|
expert_missing = []
|
|
if expert_provider == "anthropic":
|
|
expert_key_missing = not os.environ.get('EXPERT_ANTHROPIC_API_KEY')
|
|
fallback_available = expert_provider == provider and os.environ.get('ANTHROPIC_API_KEY')
|
|
if expert_key_missing and not fallback_available:
|
|
expert_missing.append('EXPERT_ANTHROPIC_API_KEY environment variable is not set')
|
|
elif expert_provider == "openai":
|
|
expert_key_missing = not os.environ.get('EXPERT_OPENAI_API_KEY')
|
|
fallback_available = expert_provider == provider and os.environ.get('OPENAI_API_KEY')
|
|
if expert_key_missing and not fallback_available:
|
|
expert_missing.append('EXPERT_OPENAI_API_KEY environment variable is not set')
|
|
elif expert_provider == "openrouter":
|
|
expert_key_missing = not os.environ.get('EXPERT_OPENROUTER_API_KEY')
|
|
fallback_available = expert_provider == provider and os.environ.get('OPENROUTER_API_KEY')
|
|
if expert_key_missing and not fallback_available:
|
|
expert_missing.append('EXPERT_OPENROUTER_API_KEY environment variable is not set')
|
|
elif expert_provider == "openai-compatible":
|
|
expert_key_missing = not os.environ.get('EXPERT_OPENAI_API_KEY')
|
|
fallback_available = expert_provider == provider and os.environ.get('OPENAI_API_KEY')
|
|
if expert_key_missing and not fallback_available:
|
|
expert_missing.append('EXPERT_OPENAI_API_KEY environment variable is not set')
|
|
expert_base_missing = not os.environ.get('EXPERT_OPENAI_API_BASE')
|
|
base_fallback_available = expert_provider == provider and os.environ.get('OPENAI_API_BASE')
|
|
if expert_base_missing and not base_fallback_available:
|
|
expert_missing.append('EXPERT_OPENAI_API_BASE environment variable is not set')
|
|
|
|
# If main keys missing, just disable LLM entirely
|
|
llm_enabled = True
|
|
if missing:
|
|
llm_enabled = False
|
|
|
|
# If expert keys missing, disable expert
|
|
expert_enabled = True
|
|
if expert_missing:
|
|
expert_enabled = False
|
|
|
|
return llm_enabled, expert_enabled, missing, expert_missing
|
|
|
|
def main():
|
|
try:
|
|
try:
|
|
args = parse_arguments()
|
|
llm_enabled, expert_enabled, missing, expert_missing = validate_environment(args)
|
|
|
|
# If main LLM keys missing
|
|
if missing:
|
|
# Disable LLM completely
|
|
console.print(Panel(
|
|
f"[yellow]LLM disabled due to missing main provider configuration:[/yellow]\n" +
|
|
"\n".join(f"- {m}" for m in missing) +
|
|
"\nSet the required environment variables to enable LLM features.",
|
|
title="LLM Disabled",
|
|
style="yellow"
|
|
))
|
|
|
|
# If expert keys missing
|
|
if expert_missing:
|
|
console.print(Panel(
|
|
f"[yellow]Expert tools disabled due to missing configuration:[/yellow]\n" +
|
|
"\n".join(f"- {m}" for m in expert_missing) +
|
|
"\nSet the required environment variables or args to enable expert mode.",
|
|
title="Expert Tools Disabled",
|
|
style="yellow"
|
|
))
|
|
|
|
# If no message, exit
|
|
if not args.message:
|
|
print_error("--message is required")
|
|
sys.exit(1)
|
|
|
|
base_task = args.message
|
|
config = {
|
|
"configurable": {
|
|
"thread_id": "abc123"
|
|
},
|
|
"recursion_limit": 100,
|
|
"research_only": args.research_only,
|
|
"cowboy_mode": args.cowboy_mode
|
|
}
|
|
|
|
_global_memory['config'] = config
|
|
_global_memory['config']['expert_provider'] = args.expert_provider
|
|
_global_memory['config']['expert_model'] = args.expert_model
|
|
|
|
# Only initialize the model if LLM is enabled
|
|
model = None
|
|
if llm_enabled:
|
|
model = initialize_llm(args.provider, args.model)
|
|
|
|
print_stage_header("Research Stage")
|
|
|
|
research_tools = get_research_tools(
|
|
research_only=_global_memory.get('config', {}).get('research_only', False),
|
|
expert_enabled=expert_enabled,
|
|
llm_enabled=llm_enabled
|
|
)
|
|
|
|
# If no LLM, we can't run the agent, just print a message
|
|
if llm_enabled:
|
|
research_agent = create_react_agent(
|
|
model,
|
|
research_tools,
|
|
checkpointer=research_memory
|
|
)
|
|
|
|
research_prompt = f"""User query: {base_task} --keep it simple
|
|
|
|
{RESEARCH_PROMPT}
|
|
|
|
Be very thorough in your research and emit lots of snippets, key facts. If you take more than a few steps, be eager to emit research subtasks.{'' if args.research_only else ' Only request implementation if the user explicitly asked for changes to be made.'}"""
|
|
try:
|
|
run_agent_with_retry(research_agent, research_prompt, config)
|
|
except TaskCompletedException as e:
|
|
print_stage_header("Task Completed")
|
|
raise
|
|
else:
|
|
console.print(Panel("[yellow]LLM is disabled, cannot perform LLM-based research[/yellow]", title="No LLM Available"))
|
|
|
|
run_research_subtasks(base_task, config, model, expert_enabled=expert_enabled, llm_enabled=llm_enabled)
|
|
|
|
if not is_informational_query():
|
|
print_stage_header("Planning Stage")
|
|
planning_tools = get_planning_tools(expert_enabled=expert_enabled, llm_enabled=llm_enabled)
|
|
|
|
if llm_enabled:
|
|
planning_agent = create_react_agent(model, planning_tools, checkpointer=planning_memory)
|
|
planning_prompt = PLANNING_PROMPT.format(
|
|
research_notes=get_memory_value('research_notes'),
|
|
key_facts=get_memory_value('key_facts'),
|
|
key_snippets=get_memory_value('key_snippets'),
|
|
base_task=base_task,
|
|
related_files="\n".join(get_related_files())
|
|
)
|
|
run_agent_with_retry(planning_agent, planning_prompt, config)
|
|
else:
|
|
console.print(Panel("[yellow]LLM is disabled, cannot perform planning[/yellow]", title="No LLM Available"))
|
|
|
|
run_implementation_stage(
|
|
base_task,
|
|
get_memory_value('tasks'),
|
|
get_memory_value('plan'),
|
|
get_related_files(),
|
|
model,
|
|
expert_enabled=expert_enabled,
|
|
llm_enabled=llm_enabled
|
|
)
|
|
except TaskCompletedException:
|
|
sys.exit(0)
|
|
finally:
|
|
pass
|
|
|
|
if __name__ == "__main__":
|
|
main()
|