Allow planning agent to direct implementation of tasks.

This commit is contained in:
user 2024-12-21 13:40:17 -05:00
parent 37e36967ee
commit d44d309028
4 changed files with 58 additions and 45 deletions

View File

@ -12,12 +12,9 @@ from ra_aid.agent_utils import run_agent_with_retry, run_task_implementation_age
from ra_aid.agent_utils import run_research_agent
from ra_aid.prompts import (
PLANNING_PROMPT,
IMPLEMENTATION_PROMPT,
CHAT_PROMPT,
EXPERT_PROMPT_SECTION_PLANNING,
EXPERT_PROMPT_SECTION_IMPLEMENTATION,
HUMAN_PROMPT_SECTION_PLANNING,
HUMAN_PROMPT_SECTION_IMPLEMENTATION
)
from ra_aid.llm import initialize_llm
@ -125,35 +122,6 @@ def is_stage_requested(stage: str) -> bool:
return _global_memory.get('implementation_requested', False)
return False
def run_implementation_stage(base_task, tasks, plan, related_files, model, expert_enabled: bool):
"""Run implementation stage with a distinct agent for each task."""
if not is_stage_requested('implementation'):
print_stage_header("Implementation Stage Skipped")
return
print_stage_header("Implementation Stage")
# Get tasks directly from memory, maintaining order by ID
task_list = [task for _, task in sorted(_global_memory['tasks'].items())]
print_task_header(f"Found {len(task_list)} tasks to implement")
for i, task in enumerate(task_list, 1):
print_task_header(task)
# Run implementation agent for this task
run_task_implementation_agent(
base_task=base_task,
tasks=task_list,
task=task,
plan=plan,
related_files=related_files,
model=model,
expert_enabled=expert_enabled
)
def main():
"""Main entry point for the ra-aid command line tool."""
try:
@ -261,16 +229,6 @@ def main():
# Run planning agent
run_agent_with_retry(planning_agent, planning_prompt, config)
# Run implementation stage with task-specific agents
run_implementation_stage(
base_task,
get_memory_value('tasks'),
get_memory_value('plan'),
get_related_files(),
model,
expert_enabled=expert_enabled
)
except KeyboardInterrupt:
console.print("\n[red]Operation cancelled by user[/red]")
sys.exit(1)

View File

@ -238,8 +238,9 @@ Guidelines:
Use emit_plan to store the high-level implementation plan.
For each sub-task, use emit_task to store a step-by-step description.
The description should be only as detailed as warranted by the complexity of the request.
You may use delete_tasks or swap_task_order to adjust the task list/order as you plan.
Do not implement anything yet.
Once you are absolutely sure you are completed planning, you may begin to call request_task_implementation one-by-one for each task to implement the plan.
{expert_section}
{human_section}

View File

@ -9,7 +9,7 @@ from ra_aid.tools import (
swap_task_order, monorepo_detected, existing_project_detected, ui_detected
)
from ra_aid.tools.memory import one_shot_completed
from ra_aid.tools.agent import request_research
from ra_aid.tools.agent import request_research, request_task_implementation
# Read-only tools that don't modify system state
def get_read_only_tools(human_interaction: bool = False) -> list:
@ -76,7 +76,8 @@ def get_planning_tools(expert_enabled: bool = True) -> list:
delete_tasks,
emit_plan,
emit_task,
swap_task_order
swap_task_order,
request_task_implementation
]
tools.extend(planning_tools)

View File

@ -6,6 +6,7 @@ from rich.console import Console
from ra_aid.tools.memory import _global_memory
from .memory import get_memory_value, get_related_files
from ..llm import initialize_llm
from ..console import print_task_header
console = Console()
@ -59,3 +60,55 @@ def request_research(query: str) -> Dict[str, Any]:
"success": success,
"reason": reason
}
@tool("request_task_implementation")
def request_task_implementation(task_spec: str) -> Dict[str, Any]:
"""Spawn an implementation agent to execute the given task.
Args:
task_spec: The full task specification
"""
# Initialize model from config
config = _global_memory.get('config', {})
model = initialize_llm(config.get('provider', 'anthropic'), config.get('model', 'claude-3-5-sonnet-20241022'))
# Get required parameters
tasks = [_global_memory['tasks'][task_id] for task_id in sorted(_global_memory['tasks'])]
plan = _global_memory.get('plan', '')
related_files = list(get_related_files())
try:
print_task_header(task_spec)
# Run implementation agent
from ..agent_utils import run_task_implementation_agent
result = run_task_implementation_agent(
base_task=_global_memory.get('base_task', ''),
tasks=tasks,
task=task_spec,
plan=plan,
related_files=related_files,
model=model,
expert_enabled=True
)
success = True
reason = None
except KeyboardInterrupt:
console.print("\n[yellow]Task implementation interrupted by user[/yellow]")
success = False
reason = "cancelled_by_user"
except Exception as e:
console.print(f"\n[red]Error during task implementation: {str(e)}[/red]")
success = False
reason = f"error: {str(e)}"
# Get completion message if available
completion_message = _global_memory.get('completion_message', 'Task was completed successfully.' if success else None)
return {
"facts": get_memory_value("key_facts"),
"files": list(get_related_files()),
"completion_message": completion_message,
"success": success,
"reason": reason
}