Introduce run_task_implementation_agent.

This commit is contained in:
user 2024-12-21 13:13:50 -05:00
parent 85f56cb75c
commit 37e36967ee
2 changed files with 91 additions and 24 deletions

View File

@ -7,7 +7,8 @@ from langgraph.checkpoint.memory import MemorySaver
from langgraph.prebuilt import create_react_agent
from ra_aid.env import validate_environment
from ra_aid.tools.memory import _global_memory, get_related_files, get_memory_value
from ra_aid import print_stage_header, print_task_header, print_error, run_agent_with_retry
from ra_aid import print_stage_header, print_task_header, print_error
from ra_aid.agent_utils import run_agent_with_retry, run_task_implementation_agent
from ra_aid.agent_utils import run_research_agent
from ra_aid.prompts import (
PLANNING_PROMPT,
@ -140,28 +141,16 @@ def run_implementation_stage(base_task, tasks, plan, related_files, model, exper
for i, task in enumerate(task_list, 1):
print_task_header(task)
# Create a unique memory instance for this task
task_memory = MemorySaver()
# Create a fresh agent for each task
task_agent = create_react_agent(model, get_implementation_tools(expert_enabled=expert_enabled), checkpointer=task_memory)
# Construct task-specific prompt
expert_section = EXPERT_PROMPT_SECTION_IMPLEMENTATION if expert_enabled else ""
human_section = HUMAN_PROMPT_SECTION_IMPLEMENTATION if _global_memory.get('config', {}).get('hil', False) else ""
task_prompt = (IMPLEMENTATION_PROMPT).format(
plan=plan,
key_facts=get_memory_value('key_facts'),
key_snippets=get_memory_value('key_snippets'),
task=task,
related_files="\n".join(related_files),
# Run implementation agent for this task
run_task_implementation_agent(
base_task=base_task,
expert_section=expert_section,
human_section=human_section
tasks=task_list,
task=task,
plan=plan,
related_files=related_files,
model=model,
expert_enabled=expert_enabled
)
# Run agent for this task
run_agent_with_retry(task_agent, task_prompt, {"configurable": {"thread_id": "abc123"}, "recursion_limit": 100})

View File

@ -2,9 +2,18 @@
import time
import uuid
from typing import Optional, Any
from typing import Optional, Any, List
from langgraph.prebuilt import create_react_agent
from ra_aid.tool_configs import get_implementation_tools, get_research_tools
from ra_aid.prompts import (
IMPLEMENTATION_PROMPT,
EXPERT_PROMPT_SECTION_IMPLEMENTATION,
HUMAN_PROMPT_SECTION_IMPLEMENTATION,
EXPERT_PROMPT_SECTION_RESEARCH,
RESEARCH_PROMPT,
HUMAN_PROMPT_SECTION_RESEARCH
)
from langgraph.checkpoint.memory import MemorySaver
from langchain_core.messages import HumanMessage
@ -14,7 +23,10 @@ from rich.console import Console
from rich.markdown import Markdown
from rich.panel import Panel
from ra_aid.tools.memory import _global_memory
from ra_aid.tools.memory import (
_global_memory,
get_memory_value,
)
from ra_aid.globals import RESEARCH_AGENT_RECURSION_LIMIT
from ra_aid.tool_configs import get_research_tools
from ra_aid.prompts import (
@ -64,7 +76,6 @@ def run_research_agent(
# Initialize memory if not provided
if memory is None:
memory = MemorySaver()
memory.memory = _global_memory
# Set up thread ID
if thread_id is None:
@ -116,6 +127,73 @@ def print_error(msg: str) -> None:
"""Print error messages."""
console.print(f"\n{msg}", style="red")
def run_task_implementation_agent(
base_task: str,
tasks: list,
task: str,
plan: str,
related_files: list,
model,
*,
expert_enabled: bool = False,
memory: Optional[Any] = None,
config: Optional[dict] = None,
thread_id: Optional[str] = None
) -> Optional[str]:
"""Run an implementation agent for a specific task.
Args:
base_task: The main task being implemented
tasks: List of tasks to implement
plan: The implementation plan
related_files: List of related files
model: The LLM model to use
expert_enabled: Whether expert mode is enabled
memory: Optional memory instance to use
config: Optional configuration dictionary
thread_id: Optional thread ID (defaults to new UUID)
Returns:
Optional[str]: The completion message if task completed successfully
"""
# Initialize memory if not provided
if memory is None:
memory = MemorySaver()
# Set up thread ID
if thread_id is None:
thread_id = str(uuid.uuid4())
# Configure tools
tools = get_implementation_tools(expert_enabled=expert_enabled)
# Create agent
agent = create_react_agent(model, tools, checkpointer=memory)
# Build prompt
prompt = IMPLEMENTATION_PROMPT.format(
base_task=base_task,
task=task,
tasks=tasks,
plan=plan,
related_files=related_files,
key_facts=get_memory_value('key_facts'),
key_snippets=get_memory_value('key_snippets'),
expert_section=EXPERT_PROMPT_SECTION_IMPLEMENTATION if expert_enabled else "",
human_section=HUMAN_PROMPT_SECTION_IMPLEMENTATION if _global_memory.get('config', {}).get('hil', False) else ""
)
# Set up configuration
run_config = {
"configurable": {"thread_id": thread_id},
"recursion_limit": 100
}
if config:
run_config.update(config)
# Run agent with retry logic
return run_agent_with_retry(agent, prompt, run_config)
def run_agent_with_retry(agent, prompt: str, config: dict) -> Optional[str]:
"""Run an agent with retry logic for internal server errors and task completion handling.