272 lines
9.2 KiB
Python
272 lines
9.2 KiB
Python
"""Utilities for handling token limits with Anthropic models."""
|
|
|
|
from functools import partial
|
|
from typing import Any, Dict, List, Optional, Sequence
|
|
from dataclasses import dataclass
|
|
|
|
from langchain_anthropic import ChatAnthropic
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
BaseMessage,
|
|
RemoveMessage,
|
|
ToolMessage,
|
|
trim_messages,
|
|
)
|
|
from langchain_core.messages.base import message_to_dict
|
|
|
|
from ra_aid.anthropic_message_utils import (
|
|
anthropic_trim_messages,
|
|
has_tool_use,
|
|
)
|
|
from langgraph.prebuilt.chat_agent_executor import AgentState
|
|
from litellm import token_counter
|
|
|
|
from ra_aid.agent_backends.ciayn_agent import CiaynAgent
|
|
from ra_aid.database.repositories.config_repository import get_config_repository
|
|
from ra_aid.logging_config import get_logger
|
|
from ra_aid.models_params import DEFAULT_TOKEN_LIMIT, models_params
|
|
from ra_aid.console.output import cpm, print_messages_compact
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
def estimate_messages_tokens(messages: Sequence[BaseMessage]) -> int:
|
|
"""Helper function to estimate total tokens in a sequence of messages.
|
|
|
|
Args:
|
|
messages: Sequence of messages to count tokens for
|
|
|
|
Returns:
|
|
Total estimated token count
|
|
"""
|
|
if not messages:
|
|
return 0
|
|
|
|
estimate_tokens = CiaynAgent._estimate_tokens
|
|
return sum(estimate_tokens(msg) for msg in messages)
|
|
|
|
|
|
def convert_message_to_litellm_format(message: BaseMessage) -> Dict:
|
|
"""Convert a BaseMessage to the format expected by litellm.
|
|
|
|
Args:
|
|
message: The BaseMessage to convert
|
|
|
|
Returns:
|
|
Dict in litellm format
|
|
"""
|
|
message_dict = message_to_dict(message)
|
|
return {
|
|
"role": message_dict["type"],
|
|
"content": message_dict["data"]["content"],
|
|
}
|
|
|
|
|
|
def create_token_counter_wrapper(model: str):
|
|
"""Create a wrapper for token counter that handles BaseMessage conversion.
|
|
|
|
Args:
|
|
model: The model name to use for token counting
|
|
|
|
Returns:
|
|
A function that accepts BaseMessage objects and returns token count
|
|
"""
|
|
|
|
# Create a partial function that already has the model parameter set
|
|
base_token_counter = partial(token_counter, model=model)
|
|
|
|
def wrapped_token_counter(messages: List[BaseMessage]) -> int:
|
|
"""Count tokens in a list of messages, converting BaseMessage to dict for litellm token counter usage.
|
|
|
|
Args:
|
|
messages: List of BaseMessage objects
|
|
|
|
Returns:
|
|
Token count for the messages
|
|
"""
|
|
if not messages:
|
|
return 0
|
|
|
|
litellm_messages = [convert_message_to_litellm_format(msg) for msg in messages]
|
|
result = base_token_counter(messages=litellm_messages)
|
|
return result
|
|
|
|
return wrapped_token_counter
|
|
|
|
|
|
def state_modifier(
|
|
state: AgentState, model: ChatAnthropic, max_input_tokens: int = DEFAULT_TOKEN_LIMIT
|
|
) -> list[BaseMessage]:
|
|
"""Given the agent state and max_tokens, return a trimmed list of messages.
|
|
|
|
This uses anthropic_trim_messages which always keeps the first 2 messages.
|
|
|
|
Args:
|
|
state: The current agent state containing messages
|
|
model: The language model to use for token counting
|
|
max_input_tokens: Maximum number of tokens to allow (default: DEFAULT_TOKEN_LIMIT)
|
|
|
|
Returns:
|
|
list[BaseMessage]: Trimmed list of messages that fits within token limit
|
|
"""
|
|
messages = state["messages"]
|
|
if not messages:
|
|
return []
|
|
|
|
wrapped_token_counter = create_token_counter_wrapper(model.model)
|
|
|
|
# Keep max_input_tokens at 21000 as requested
|
|
max_input_tokens = 21000
|
|
|
|
print("\nDEBUG - Starting token trimming with max_tokens:", max_input_tokens)
|
|
print(f"Current token total: {wrapped_token_counter(messages)}")
|
|
|
|
# Print more details about the messages to help debug
|
|
for i, msg in enumerate(messages):
|
|
if isinstance(msg, AIMessage):
|
|
print(f"DEBUG - AIMessage[{i}] content type: {type(msg.content)}")
|
|
print(f"DEBUG - AIMessage[{i}] has_tool_use: {has_tool_use(msg)}")
|
|
if has_tool_use(msg) and i < len(messages) - 1:
|
|
print(
|
|
f"DEBUG - Next message is ToolMessage: {isinstance(messages[i+1], ToolMessage)}"
|
|
)
|
|
|
|
result = anthropic_trim_messages(
|
|
messages,
|
|
token_counter=wrapped_token_counter,
|
|
max_tokens=max_input_tokens,
|
|
strategy="last",
|
|
allow_partial=False,
|
|
include_system=True,
|
|
num_messages_to_keep=2,
|
|
)
|
|
|
|
if len(result) < len(messages):
|
|
print(f"TRIMMED: {len(messages)} messages → {len(result)} messages")
|
|
total_tokens_after = wrapped_token_counter(result)
|
|
print(f"New token total: {total_tokens_after}")
|
|
print("BEFORE TRIMMING")
|
|
print_messages_compact(messages)
|
|
print("AFTER TRIMMING")
|
|
print_messages_compact(result)
|
|
|
|
return result
|
|
|
|
|
|
def sonnet_35_state_modifier(
|
|
state: AgentState, max_input_tokens: int = DEFAULT_TOKEN_LIMIT
|
|
) -> list[BaseMessage]:
|
|
"""Given the agent state and max_tokens, return a trimmed list of messages.
|
|
|
|
Args:
|
|
state: The current agent state containing messages
|
|
max_tokens: Maximum number of tokens to allow (default: DEFAULT_TOKEN_LIMIT)
|
|
|
|
Returns:
|
|
list[BaseMessage]: Trimmed list of messages that fits within token limit
|
|
"""
|
|
messages = state["messages"]
|
|
|
|
if not messages:
|
|
return []
|
|
|
|
first_message = messages[0]
|
|
remaining_messages = messages[1:]
|
|
first_tokens = estimate_messages_tokens([first_message])
|
|
new_max_tokens = max_input_tokens - first_tokens
|
|
|
|
# Calculate total tokens before trimming
|
|
total_tokens_before = estimate_messages_tokens(messages)
|
|
print(f"Current token total: {total_tokens_before}")
|
|
|
|
# Trim remaining messages
|
|
trimmed_remaining = anthropic_trim_messages(
|
|
remaining_messages,
|
|
token_counter=estimate_messages_tokens,
|
|
max_tokens=new_max_tokens,
|
|
strategy="last",
|
|
allow_partial=False,
|
|
include_system=True,
|
|
)
|
|
|
|
result = [first_message] + trimmed_remaining
|
|
|
|
# Only show message if some messages were trimmed
|
|
if len(result) < len(messages):
|
|
print(f"TRIMMED: {len(messages)} messages → {len(result)} messages")
|
|
# Calculate total tokens after trimming
|
|
total_tokens_after = estimate_messages_tokens(result)
|
|
print(f"New token total: {total_tokens_after}")
|
|
|
|
# No need to fix message content as anthropic_trim_messages already handles this
|
|
|
|
return result
|
|
|
|
|
|
def get_model_token_limit(
|
|
config: Dict[str, Any], agent_type: str = "default"
|
|
) -> Optional[int]:
|
|
"""Get the token limit for the current model configuration based on agent type.
|
|
|
|
Args:
|
|
config: Configuration dictionary containing provider and model information
|
|
agent_type: Type of agent ("default", "research", or "planner")
|
|
|
|
Returns:
|
|
Optional[int]: The token limit if found, None otherwise
|
|
"""
|
|
try:
|
|
# Try to get config from repository for production use
|
|
try:
|
|
config_from_repo = get_config_repository().get_all()
|
|
# If we succeeded, use the repository config instead of passed config
|
|
config = config_from_repo
|
|
except RuntimeError:
|
|
# In tests, this may fail because the repository isn't set up
|
|
# So we'll use the passed config directly
|
|
pass
|
|
if agent_type == "research":
|
|
provider = config.get("research_provider", "") or config.get("provider", "")
|
|
model_name = config.get("research_model", "") or config.get("model", "")
|
|
elif agent_type == "planner":
|
|
provider = config.get("planner_provider", "") or config.get("provider", "")
|
|
model_name = config.get("planner_model", "") or config.get("model", "")
|
|
else:
|
|
provider = config.get("provider", "")
|
|
model_name = config.get("model", "")
|
|
|
|
try:
|
|
from litellm import get_model_info
|
|
|
|
provider_model = model_name if not provider else f"{provider}/{model_name}"
|
|
model_info = get_model_info(provider_model)
|
|
max_input_tokens = model_info.get("max_input_tokens")
|
|
if max_input_tokens:
|
|
logger.debug(
|
|
f"Using litellm token limit for {model_name}: {max_input_tokens}"
|
|
)
|
|
return max_input_tokens
|
|
except Exception as e:
|
|
logger.debug(
|
|
f"Error getting model info from litellm: {e}, falling back to models_params"
|
|
)
|
|
|
|
# Fallback to models_params dict
|
|
# Normalize model name for fallback lookup (e.g. claude-2 -> claude2)
|
|
normalized_name = model_name.replace("-", "")
|
|
provider_tokens = models_params.get(provider, {})
|
|
if normalized_name in provider_tokens:
|
|
max_input_tokens = provider_tokens[normalized_name]["token_limit"]
|
|
logger.debug(
|
|
f"Found token limit for {provider}/{model_name}: {max_input_tokens}"
|
|
)
|
|
else:
|
|
max_input_tokens = None
|
|
logger.debug(f"Could not find token limit for {provider}/{model_name}")
|
|
|
|
return max_input_tokens
|
|
|
|
except Exception as e:
|
|
logger.warning(f"Failed to get model token limit: {e}")
|
|
return None
|