209 lines
6.6 KiB
Python
209 lines
6.6 KiB
Python
import os
|
|
from typing import Any, Dict, Optional
|
|
|
|
from .models_params import models_params
|
|
from langchain_anthropic import ChatAnthropic
|
|
from langchain_core.language_models import BaseChatModel
|
|
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
from langchain_openai import ChatOpenAI
|
|
|
|
from ra_aid.chat_models.deepseek_chat import ChatDeepseekReasoner
|
|
from ra_aid.logging_config import get_logger
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
def get_env_var(name: str, expert: bool = False) -> Optional[str]:
|
|
"""Get environment variable with optional expert prefix and fallback."""
|
|
prefix = "EXPERT_" if expert else ""
|
|
value = os.getenv(f"{prefix}{name}")
|
|
|
|
# If expert mode and no expert value, fall back to base value
|
|
if expert and not value:
|
|
value = os.getenv(name)
|
|
|
|
return value
|
|
|
|
|
|
def create_deepseek_client(
|
|
model_name: str,
|
|
api_key: str,
|
|
base_url: str,
|
|
temperature: Optional[float] = None,
|
|
is_expert: bool = False,
|
|
) -> BaseChatModel:
|
|
"""Create DeepSeek client with appropriate configuration."""
|
|
if model_name.lower() == "deepseek-reasoner":
|
|
return ChatDeepseekReasoner(
|
|
api_key=api_key,
|
|
base_url=base_url,
|
|
temperature=0
|
|
if is_expert
|
|
else (temperature if temperature is not None else 1),
|
|
model=model_name,
|
|
)
|
|
|
|
return ChatOpenAI(
|
|
api_key=api_key,
|
|
base_url=base_url,
|
|
temperature=0 if is_expert else (temperature if temperature is not None else 1),
|
|
model=model_name,
|
|
)
|
|
|
|
|
|
def create_openrouter_client(
|
|
model_name: str,
|
|
api_key: str,
|
|
temperature: Optional[float] = None,
|
|
is_expert: bool = False,
|
|
) -> BaseChatModel:
|
|
"""Create OpenRouter client with appropriate configuration."""
|
|
if model_name.startswith("deepseek/") and "deepseek-r1" in model_name.lower():
|
|
return ChatDeepseekReasoner(
|
|
api_key=api_key,
|
|
base_url="https://openrouter.ai/api/v1",
|
|
temperature=0
|
|
if is_expert
|
|
else (temperature if temperature is not None else 1),
|
|
model=model_name,
|
|
)
|
|
|
|
return ChatOpenAI(
|
|
api_key=api_key,
|
|
base_url="https://openrouter.ai/api/v1",
|
|
model=model_name,
|
|
**({"temperature": temperature} if temperature is not None else {}),
|
|
)
|
|
|
|
|
|
def get_provider_config(provider: str, is_expert: bool = False) -> Dict[str, Any]:
|
|
"""Get provider-specific configuration."""
|
|
configs = {
|
|
"openai": {
|
|
"api_key": get_env_var("OPENAI_API_KEY", is_expert),
|
|
"base_url": None,
|
|
},
|
|
"anthropic": {
|
|
"api_key": get_env_var("ANTHROPIC_API_KEY", is_expert),
|
|
"base_url": None,
|
|
},
|
|
"openrouter": {
|
|
"api_key": get_env_var("OPENROUTER_API_KEY", is_expert),
|
|
"base_url": "https://openrouter.ai/api/v1",
|
|
},
|
|
"openai-compatible": {
|
|
"api_key": get_env_var("OPENAI_API_KEY", is_expert),
|
|
"base_url": get_env_var("OPENAI_API_BASE", is_expert),
|
|
},
|
|
"gemini": {
|
|
"api_key": get_env_var("GEMINI_API_KEY", is_expert),
|
|
"base_url": None,
|
|
},
|
|
"deepseek": {
|
|
"api_key": get_env_var("DEEPSEEK_API_KEY", is_expert),
|
|
"base_url": "https://api.deepseek.com",
|
|
},
|
|
}
|
|
return configs.get(provider, {})
|
|
|
|
|
|
def create_llm_client(
|
|
provider: str,
|
|
model_name: str,
|
|
temperature: Optional[float] = None,
|
|
is_expert: bool = False,
|
|
) -> BaseChatModel:
|
|
"""Create a language model client with appropriate configuration.
|
|
|
|
Args:
|
|
provider: The LLM provider to use
|
|
model_name: Name of the model to use
|
|
temperature: Optional temperature setting (0.0-2.0)
|
|
is_expert: Whether this is an expert model (uses deterministic output)
|
|
|
|
Returns:
|
|
Configured language model client
|
|
"""
|
|
config = get_provider_config(provider, is_expert)
|
|
if not config:
|
|
raise ValueError(f"Unsupported provider: {provider}")
|
|
|
|
logger.debug(
|
|
"Creating LLM client with provider=%s, model=%s, temperature=%s, expert=%s",
|
|
provider,
|
|
model_name,
|
|
temperature,
|
|
is_expert,
|
|
)
|
|
|
|
# Get model configuration
|
|
model_config = models_params.get(provider, {}).get(model_name, {})
|
|
supports_temperature = model_config.get("supports_temperature", False)
|
|
|
|
# Handle temperature settings
|
|
if is_expert:
|
|
temp_kwargs = {"temperature": 0} if supports_temperature else {}
|
|
elif temperature is not None and supports_temperature:
|
|
temp_kwargs = {"temperature": temperature}
|
|
elif provider == "openai-compatible" and supports_temperature:
|
|
temp_kwargs = {"temperature": 0.3}
|
|
else:
|
|
temp_kwargs = {}
|
|
|
|
if provider == "deepseek":
|
|
return create_deepseek_client(
|
|
model_name=model_name,
|
|
api_key=config["api_key"],
|
|
base_url=config["base_url"],
|
|
temperature=temperature if not is_expert else 0,
|
|
is_expert=is_expert,
|
|
)
|
|
elif provider == "openrouter":
|
|
return create_openrouter_client(
|
|
model_name=model_name,
|
|
api_key=config["api_key"],
|
|
temperature=temperature if not is_expert else 0,
|
|
is_expert=is_expert,
|
|
)
|
|
elif provider == "openai":
|
|
return ChatOpenAI(
|
|
api_key=config["api_key"],
|
|
model=model_name,
|
|
**temp_kwargs,
|
|
)
|
|
elif provider == "anthropic":
|
|
return ChatAnthropic(
|
|
api_key=config["api_key"],
|
|
model_name=model_name,
|
|
**temp_kwargs,
|
|
)
|
|
elif provider == "openai-compatible":
|
|
return ChatOpenAI(
|
|
api_key=config["api_key"],
|
|
base_url=config["base_url"],
|
|
model=model_name,
|
|
**temp_kwargs,
|
|
)
|
|
elif provider == "gemini":
|
|
return ChatGoogleGenerativeAI(
|
|
api_key=config["api_key"],
|
|
model=model_name,
|
|
**temp_kwargs,
|
|
)
|
|
else:
|
|
raise ValueError(f"Unsupported provider: {provider}")
|
|
|
|
|
|
def initialize_llm(
|
|
provider: str, model_name: str, temperature: float | None = None
|
|
) -> BaseChatModel:
|
|
"""Initialize a language model client based on the specified provider and model."""
|
|
return create_llm_client(provider, model_name, temperature, is_expert=False)
|
|
|
|
|
|
def initialize_expert_llm(
|
|
provider: str = "openai", model_name: str = "o1"
|
|
) -> BaseChatModel:
|
|
"""Initialize an expert language model client based on the specified provider and model."""
|
|
return create_llm_client(provider, model_name, temperature=None, is_expert=True)
|