175 lines
6.1 KiB
Python
175 lines
6.1 KiB
Python
import os
|
|
import uuid
|
|
from dotenv import load_dotenv
|
|
from ra_aid.agent_utils import run_agent_with_retry
|
|
from typing import Dict, Any, Generator, List, Optional
|
|
from langchain_core.messages import AIMessage, HumanMessage
|
|
from langchain_openai import ChatOpenAI
|
|
from langchain_core.tools import tool
|
|
from ra_aid.tools.list_directory import list_directory_tree
|
|
from ra_aid.tool_configs import get_read_only_tools
|
|
import inspect
|
|
from rich.panel import Panel
|
|
from rich.markdown import Markdown
|
|
from rich.console import Console
|
|
|
|
console = Console()
|
|
|
|
# Load environment variables
|
|
load_dotenv()
|
|
|
|
@tool
|
|
def check_weather(location: str) -> str:
|
|
"""Gets the weather at the given location."""
|
|
return f"The weather in {location} is sunny!"
|
|
|
|
@tool
|
|
def output_message(message: str, prompt_user_input: bool = False) -> str:
|
|
"""Outputs a message to the user, optionally prompting for input."""
|
|
console.print(Panel(Markdown(message.strip())))
|
|
if prompt_user_input:
|
|
user_input = input("\n> ").strip()
|
|
print()
|
|
return user_input
|
|
return ""
|
|
|
|
class CiaynAgent:
|
|
def get_function_info(self, func):
|
|
"""
|
|
Returns a well-formatted string containing the function signature and docstring,
|
|
designed to be easily readable by both humans and LLMs.
|
|
"""
|
|
signature = inspect.signature(func)
|
|
docstring = inspect.getdoc(func)
|
|
if docstring is None:
|
|
docstring = "No docstring provided"
|
|
full_signature = f"{func.__name__}{signature}"
|
|
info = f"""{full_signature}
|
|
\"\"\"
|
|
{docstring}
|
|
\"\"\" """
|
|
return info
|
|
|
|
def __init__(self, model, tools: list):
|
|
"""Initialize the agent with a model and list of tools."""
|
|
self.model = model
|
|
self.tools = tools
|
|
self.available_functions = []
|
|
for t in tools:
|
|
self.available_functions.append(self.get_function_info(t.func))
|
|
|
|
def _build_prompt(self, last_result: Optional[str] = None) -> str:
|
|
"""Build the prompt for the agent including available tools and context."""
|
|
base_prompt = ""
|
|
if last_result is not None:
|
|
base_prompt += f"\n<last result>{last_result}</last result>"
|
|
|
|
base_prompt += f"""
|
|
<available functions>
|
|
{"\n\n".join(self.available_functions)}
|
|
</available functions>
|
|
|
|
<agent instructions>
|
|
You are a ReAct agent. You run in a loop and use ONE of the available functions per iteration.
|
|
If the current query does not require a function call, just use output_message to say what you would normally say.
|
|
The result of that function call will be given to you in the next message.
|
|
Call one function at a time. Function arguments can be complex objects, long strings, etc. if needed.
|
|
The user cannot see the results of function calls, so you have to explicitly call output_message if you want them to see something.
|
|
You must always respond with a single line of python that calls one of the available tools.
|
|
Use as many steps as you need to in order to fully complete the task.
|
|
Start by asking the user what they want.
|
|
</agent instructions>
|
|
|
|
<example response>
|
|
check_weather("London")
|
|
</example response>
|
|
|
|
<example response>
|
|
output_message(\"\"\"How can I help you today?\"\"\", True)
|
|
</example response>
|
|
|
|
Output **ONLY THE CODE** and **NO MARKDOWN BACKTICKS**"""
|
|
return base_prompt
|
|
|
|
def _execute_tool(self, code: str) -> str:
|
|
"""Execute a tool call and return its result."""
|
|
globals_dict = {
|
|
tool.func.__name__: tool.func
|
|
for tool in self.tools
|
|
}
|
|
|
|
try:
|
|
result = eval(code.strip(), globals_dict)
|
|
return result
|
|
except Exception as e:
|
|
error_msg = f"Error executing code: {str(e)}"
|
|
console.print(f"[red]Error:[/red] {error_msg}")
|
|
return error_msg
|
|
|
|
|
|
def _create_agent_chunk(self, content: str) -> Dict[str, Any]:
|
|
"""Create an agent chunk in the format expected by print_agent_output."""
|
|
return {
|
|
"agent": {
|
|
"messages": [AIMessage(content=content)]
|
|
}
|
|
}
|
|
|
|
def _create_error_chunk(self, content: str) -> Dict[str, Any]:
|
|
"""Create an error chunk in the format expected by print_agent_output."""
|
|
return {
|
|
"tools": {
|
|
"messages": [{"status": "error", "content": content}]
|
|
}
|
|
}
|
|
|
|
def stream(self, messages_dict: Dict[str, List[Any]], config: Dict[str, Any] = None) -> Generator[Dict[str, Any], None, None]:
|
|
"""Stream agent responses in a format compatible with print_agent_output."""
|
|
initial_messages = messages_dict.get("messages", [])
|
|
chat_history = []
|
|
last_result = None
|
|
first_iteration = True
|
|
|
|
while True:
|
|
base_prompt = self._build_prompt(None if first_iteration else last_result)
|
|
chat_history.append(HumanMessage(content=base_prompt))
|
|
|
|
try:
|
|
full_history = initial_messages + chat_history
|
|
response = self.model.invoke(full_history)
|
|
|
|
last_result = self._execute_tool(response.content)
|
|
chat_history.append(response)
|
|
first_iteration = False
|
|
yield {}
|
|
|
|
except Exception as e:
|
|
error_msg = f"Error: {str(e)}"
|
|
yield self._create_error_chunk(error_msg)
|
|
break
|
|
|
|
if __name__ == "__main__":
|
|
# Initialize the chat model
|
|
chat = ChatOpenAI(
|
|
api_key=os.getenv("OPENROUTER_API_KEY"),
|
|
temperature=0.7,
|
|
base_url="https://openrouter.ai/api/v1",
|
|
model="qwen/qwen-2.5-coder-32b-instruct"
|
|
)
|
|
|
|
# Get tools
|
|
tools = get_read_only_tools(True, True)
|
|
tools.append(output_message)
|
|
|
|
# Initialize agent
|
|
agent = CiaynAgent(chat, tools)
|
|
|
|
# Test chat prompt
|
|
test_prompt = "Find the tests in this codebase."
|
|
|
|
# Run the agent using run_agent_with_retry
|
|
result = run_agent_with_retry(agent, test_prompt, {"configurable": {"thread_id": str(uuid.uuid4())}})
|
|
|
|
# Initial greeting
|
|
print("Welcome to the Chat Interface! (Type 'quit' to exit)")
|