365 lines
12 KiB
Python
365 lines
12 KiB
Python
from typing import Dict, List, Any, Union, TypedDict, Optional, Sequence, Set
|
|
from ra_aid.exceptions import TaskCompletedException
|
|
from rich.console import Console
|
|
from rich.markdown import Markdown
|
|
from rich.panel import Panel
|
|
from langchain_core.tools import tool
|
|
|
|
class SnippetInfo(TypedDict):
|
|
"""Type definition for source code snippet information"""
|
|
filepath: str
|
|
line_number: int
|
|
snippet: str
|
|
description: Optional[str]
|
|
|
|
console = Console()
|
|
|
|
# Global memory store
|
|
_global_memory: Dict[str, Union[List[Any], Dict[int, str], Dict[int, SnippetInfo], int, Set[str]]] = {
|
|
'research_notes': [],
|
|
'plans': [],
|
|
'tasks': [],
|
|
'research_subtasks': [],
|
|
'key_facts': {}, # Dict[int, str] - ID to fact mapping
|
|
'key_fact_id_counter': 0, # Counter for generating unique fact IDs
|
|
'key_snippets': {}, # Dict[int, SnippetInfo] - ID to snippet mapping
|
|
'key_snippet_id_counter': 0, # Counter for generating unique snippet IDs
|
|
'implementation_requested': [],
|
|
'implementation_skipped': [],
|
|
'related_files': set()
|
|
}
|
|
|
|
@tool("emit_research_notes")
|
|
def emit_research_notes(notes: str) -> str:
|
|
"""Store research notes in global memory.
|
|
|
|
Args:
|
|
notes: The research notes to store
|
|
|
|
Returns:
|
|
The stored notes
|
|
"""
|
|
_global_memory['research_notes'].append(notes)
|
|
console.print(Panel(Markdown(notes), title="🔍 Research Notes"))
|
|
return notes
|
|
|
|
@tool("emit_plan")
|
|
def emit_plan(plan: str) -> str:
|
|
"""Store a plan step in global memory.
|
|
|
|
Args:
|
|
plan: The plan step to store
|
|
|
|
Returns:
|
|
The stored plan
|
|
"""
|
|
_global_memory['plans'].append(plan)
|
|
console.print(Panel(Markdown(plan), title="📋 Plan"))
|
|
return plan
|
|
|
|
@tool("emit_task")
|
|
def emit_task(task: str) -> str:
|
|
"""Store a task in global memory.
|
|
|
|
Args:
|
|
task: The task to store
|
|
|
|
Returns:
|
|
The stored task
|
|
"""
|
|
_global_memory['tasks'].append(task)
|
|
console.print(Panel(Markdown(task), title="✅ Task"))
|
|
return task
|
|
|
|
@tool("emit_research_subtask")
|
|
def emit_research_subtask(subtask: str) -> str:
|
|
"""Spawn a research subtask for deeper investigation of a specific topic.
|
|
|
|
Only use this when a topic requires dedicated focused research beyond the main task.
|
|
This should be used sparingly for truly complex research needs.
|
|
|
|
Args:
|
|
subtask: Detailed description of the research subtask
|
|
|
|
Returns:
|
|
Confirmation message
|
|
"""
|
|
_global_memory['research_subtasks'].append(subtask)
|
|
console.print(Panel(Markdown(subtask), title="🔬 Research Subtask"))
|
|
return "Subtask added."
|
|
|
|
|
|
@tool("emit_key_facts")
|
|
def emit_key_facts(facts: List[str]) -> str:
|
|
"""Store multiple key facts about the project or current task in global memory.
|
|
|
|
Args:
|
|
facts: List of key facts to store
|
|
|
|
Returns:
|
|
List of stored fact confirmation messages
|
|
"""
|
|
results = []
|
|
for fact in facts:
|
|
# Get and increment fact ID
|
|
fact_id = _global_memory['key_fact_id_counter']
|
|
_global_memory['key_fact_id_counter'] += 1
|
|
|
|
# Store fact with ID
|
|
_global_memory['key_facts'][fact_id] = fact
|
|
|
|
# Display panel with ID
|
|
console.print(Panel(Markdown(fact), title=f"💡 Key Fact #{fact_id}", border_style="bright_cyan"))
|
|
|
|
# Add result message
|
|
results.append(f"Stored fact #{fact_id}: {fact}")
|
|
|
|
return "Facts stored."
|
|
|
|
|
|
@tool("delete_key_facts")
|
|
def delete_key_facts(fact_ids: List[int]) -> str:
|
|
"""Delete multiple key facts from global memory by their IDs.
|
|
Silently skips any IDs that don't exist.
|
|
|
|
Args:
|
|
fact_ids: List of fact IDs to delete
|
|
|
|
Returns:
|
|
List of success messages for deleted facts
|
|
"""
|
|
results = []
|
|
for fact_id in fact_ids:
|
|
if fact_id in _global_memory['key_facts']:
|
|
# Delete the fact
|
|
deleted_fact = _global_memory['key_facts'].pop(fact_id)
|
|
success_msg = f"Successfully deleted fact #{fact_id}: {deleted_fact}"
|
|
console.print(Panel(Markdown(success_msg), title="🗑️ Fact Deleted", border_style="green"))
|
|
results.append(success_msg)
|
|
|
|
return "Facts deleted."
|
|
|
|
@tool("request_implementation")
|
|
def request_implementation(reason: str) -> str:
|
|
"""Request that implementation proceed after research/planning.
|
|
Used to indicate the agent should move to implementation stage.
|
|
|
|
Args:
|
|
reason: Why implementation should proceed
|
|
|
|
Returns:
|
|
The stored reason
|
|
"""
|
|
_global_memory['implementation_requested'].append(reason)
|
|
console.print(Panel(Markdown(reason), title="🚀 Implementation Requested"))
|
|
return reason
|
|
|
|
|
|
@tool("skip_implementation")
|
|
def skip_implementation(reason: str) -> str:
|
|
"""Indicate that implementation can be skipped.
|
|
Used when research/planning determines no changes are needed.
|
|
|
|
Args:
|
|
reason: Why implementation can be skipped
|
|
|
|
Returns:
|
|
The stored reason
|
|
"""
|
|
_global_memory['implementation_skipped'].append(reason)
|
|
console.print(Panel(Markdown(reason), title="⏭️ Implementation Skipped"))
|
|
return reason
|
|
|
|
@tool("emit_key_snippets")
|
|
def emit_key_snippets(snippets: List[SnippetInfo]) -> str:
|
|
"""Store multiple key source code snippets in global memory.
|
|
Automatically adds the filepaths of the snippets to related files.
|
|
|
|
Args:
|
|
snippets: List of snippet information dictionaries containing:
|
|
- filepath: Path to the source file
|
|
- line_number: Line number where the snippet starts
|
|
- snippet: The source code snippet text
|
|
- description: Optional description of the significance
|
|
|
|
Returns:
|
|
List of stored snippet confirmation messages
|
|
"""
|
|
# First collect unique filepaths to add as related files
|
|
_global_memory['related_files'].update(snippet_info['filepath'] for snippet_info in snippets)
|
|
|
|
results = []
|
|
for snippet_info in snippets:
|
|
# Get and increment snippet ID
|
|
snippet_id = _global_memory['key_snippet_id_counter']
|
|
_global_memory['key_snippet_id_counter'] += 1
|
|
|
|
# Store snippet info
|
|
_global_memory['key_snippets'][snippet_id] = snippet_info
|
|
|
|
# Format display text as markdown
|
|
display_text = [
|
|
f"**Source Location**:",
|
|
f"- File: `{snippet_info['filepath']}`",
|
|
f"- Line: `{snippet_info['line_number']}`",
|
|
"", # Empty line before code block
|
|
"**Code**:",
|
|
"```python",
|
|
snippet_info['snippet'].rstrip(), # Remove trailing whitespace
|
|
"```"
|
|
]
|
|
if snippet_info['description']:
|
|
display_text.extend(["", "**Description**:", snippet_info['description']])
|
|
|
|
# Display panel
|
|
console.print(Panel(Markdown("\n".join(display_text)),
|
|
title=f"📝 Key Snippet #{snippet_id}",
|
|
border_style="bright_cyan"))
|
|
|
|
results.append(f"Stored snippet #{snippet_id}")
|
|
|
|
return "Snippets stored."
|
|
|
|
@tool("delete_key_snippets")
|
|
def delete_key_snippets(snippet_ids: List[int]) -> str:
|
|
"""Delete multiple key snippets from global memory by their IDs.
|
|
Silently skips any IDs that don't exist.
|
|
|
|
Args:
|
|
snippet_ids: List of snippet IDs to delete
|
|
|
|
Returns:
|
|
List of success messages for deleted snippets
|
|
"""
|
|
results = []
|
|
for snippet_id in snippet_ids:
|
|
if snippet_id in _global_memory['key_snippets']:
|
|
# Delete the snippet
|
|
deleted_snippet = _global_memory['key_snippets'].pop(snippet_id)
|
|
success_msg = f"Successfully deleted snippet #{snippet_id} from {deleted_snippet['filepath']}"
|
|
console.print(Panel(Markdown(success_msg),
|
|
title="🗑️ Snippet Deleted",
|
|
border_style="green"))
|
|
results.append(success_msg)
|
|
|
|
return "Snippets deleted."
|
|
|
|
@tool("one_shot_completed")
|
|
def one_shot_completed(message: str) -> str:
|
|
"""Signal that a one-shot task has been completed and execution should stop.
|
|
|
|
Args:
|
|
message: Completion message to display
|
|
|
|
Raises:
|
|
ValueError: If there are pending research subtasks or implementation requests
|
|
TaskCompletedException: When task is truly complete with no pending items
|
|
|
|
Returns:
|
|
Never returns, always raises exception
|
|
"""
|
|
if len(_global_memory['research_subtasks']) > 0:
|
|
raise ValueError("Cannot complete in one shot - research subtasks pending")
|
|
if len(_global_memory['implementation_requested']) > 0:
|
|
raise ValueError("Cannot complete in one shot - implementation was requested")
|
|
raise TaskCompletedException(message)
|
|
|
|
def get_related_files() -> Set[str]:
|
|
"""Get the current set of related files.
|
|
|
|
Returns:
|
|
Set of file paths that have been marked as related
|
|
"""
|
|
return _global_memory['related_files']
|
|
|
|
@tool("emit_related_files")
|
|
def emit_related_files(files: List[str]) -> str:
|
|
"""Store multiple related files that tools should work with.
|
|
|
|
Args:
|
|
files: List of file paths to add
|
|
|
|
Returns:
|
|
Confirmation message
|
|
"""
|
|
results = []
|
|
added_files = []
|
|
|
|
# Process unique files
|
|
for file in set(files): # Remove duplicates in input
|
|
if file not in _global_memory['related_files']:
|
|
_global_memory['related_files'].add(file)
|
|
added_files.append(file)
|
|
results.append(f"Added related file: {file}")
|
|
|
|
# Rich output - single consolidated panel
|
|
if added_files:
|
|
files_added_md = '\n'.join(f"- `{file}`" for file in added_files)
|
|
md_content = f"**Files Noted:**\n{files_added_md}"
|
|
console.print(Panel(Markdown(md_content),
|
|
title="📁 Related Files Noted",
|
|
border_style="green"))
|
|
|
|
return "Files noted."
|
|
|
|
def get_memory_value(key: str) -> str:
|
|
"""Get a value from global memory.
|
|
|
|
Different memory types return different formats:
|
|
- key_facts: Returns numbered list of facts in format '#ID: fact'
|
|
- key_snippets: Returns formatted snippets with file path, line number and content
|
|
- All other types: Returns newline-separated list of values
|
|
|
|
Args:
|
|
key: The key to get from memory
|
|
|
|
Returns:
|
|
String representation of the memory values:
|
|
- For key_facts: '#ID: fact' format, one per line
|
|
- For key_snippets: Formatted snippet blocks
|
|
- For other types: One value per line
|
|
"""
|
|
values = _global_memory.get(key, [])
|
|
|
|
if key == 'key_facts':
|
|
# For empty dict, return empty string
|
|
if not values:
|
|
return ""
|
|
# Sort by ID for consistent output and format as markdown sections
|
|
facts = []
|
|
for k, v in sorted(values.items()):
|
|
facts.extend([
|
|
f"## 🔑 Key Fact #{k}",
|
|
"", # Empty line for better markdown spacing
|
|
v,
|
|
"" # Empty line between facts
|
|
])
|
|
return "\n".join(facts).rstrip() # Remove trailing newline
|
|
|
|
if key == 'key_snippets':
|
|
if not values:
|
|
return ""
|
|
# Format each snippet with file info and content using markdown
|
|
snippets = []
|
|
for k, v in sorted(values.items()):
|
|
snippet_text = [
|
|
f"## 📝 Code Snippet #{k}",
|
|
"", # Empty line for better markdown spacing
|
|
f"**Source Location**:",
|
|
f"- File: `{v['filepath']}`",
|
|
f"- Line: `{v['line_number']}`",
|
|
"", # Empty line before code block
|
|
"**Code**:",
|
|
"```python",
|
|
v['snippet'].rstrip(), # Remove trailing whitespace
|
|
"```"
|
|
]
|
|
if v['description']:
|
|
# Add empty line and description
|
|
snippet_text.extend(["", "**Description**:", v['description']])
|
|
snippets.append("\n".join(snippet_text))
|
|
return "\n\n".join(snippets)
|
|
|
|
# For other types (lists), join with newlines
|
|
return "\n".join(str(v) for v in values)
|