RA.Aid/tests/ra_aid/test_anthropic_token_limite...

613 lines
28 KiB
Python

import unittest
from unittest.mock import MagicMock, patch
import litellm
from langchain_anthropic import ChatAnthropic
from langchain_core.messages import (
AIMessage,
HumanMessage,
SystemMessage,
ToolMessage
)
from langgraph.prebuilt.chat_agent_executor import AgentState
from ra_aid.anthropic_token_limiter import (
create_token_counter_wrapper,
estimate_messages_tokens,
get_model_token_limit,
state_modifier,
sonnet_35_state_modifier,
convert_message_to_litellm_format,
adjust_claude_37_token_limit
)
from ra_aid.anthropic_message_utils import has_tool_use, is_tool_pair
from ra_aid.models_params import models_params
class TestAnthropicTokenLimiter(unittest.TestCase):
def setUp(self):
from ra_aid.config import DEFAULT_MODEL
self.mock_model = MagicMock(spec=ChatAnthropic)
self.mock_model.model = DEFAULT_MODEL
# Sample messages for testing
self.system_message = SystemMessage(content="You are a helpful assistant.")
self.human_message = HumanMessage(content="Hello, can you help me with a task?")
self.ai_message = AIMessage(content="I'd be happy to help! What do you need?")
self.long_message = HumanMessage(content="A" * 1000) # Long message to test trimming
# Create more messages for testing
self.extra_messages = [
HumanMessage(content=f"Extra message {i}") for i in range(5)
]
# Mock state for testing state_modifier with many messages
self.state = AgentState(
messages=[self.system_message, self.human_message, self.long_message] + self.extra_messages,
next=None,
)
# Create tool-related messages for testing
self.ai_with_tool_use = AIMessage(
content="I'll use a tool to help you",
additional_kwargs={"tool_calls": [{"name": "calculator", "input": {"expression": "2+2"}}]}
)
self.tool_message = ToolMessage(
content="4",
tool_call_id="tool_call_1",
name="calculator"
)
def test_convert_message_to_litellm_format(self):
"""Test conversion of BaseMessage to litellm format."""
# Test human message
human_result = convert_message_to_litellm_format(self.human_message)
self.assertEqual(human_result["role"], "human")
self.assertEqual(human_result["content"], "Hello, can you help me with a task?")
# Test system message
system_result = convert_message_to_litellm_format(self.system_message)
self.assertEqual(system_result["role"], "system")
self.assertEqual(system_result["content"], "You are a helpful assistant.")
# Test AI message
ai_result = convert_message_to_litellm_format(self.ai_message)
self.assertEqual(ai_result["role"], "ai")
self.assertEqual(ai_result["content"], "I'd be happy to help! What do you need?")
@patch("ra_aid.anthropic_token_limiter.token_counter")
def test_create_token_counter_wrapper(self, mock_token_counter):
from ra_aid.config import DEFAULT_MODEL
# Setup mock return values
mock_token_counter.return_value = 50
# Create the wrapper
wrapper = create_token_counter_wrapper(DEFAULT_MODEL)
# Test with BaseMessage objects
result = wrapper([self.human_message])
self.assertEqual(result, 50)
# Test with empty list
result = wrapper([])
self.assertEqual(result, 0)
# Verify the mock was called with the right parameters
mock_token_counter.assert_called_with(messages=unittest.mock.ANY, model=DEFAULT_MODEL)
@patch("ra_aid.anthropic_token_limiter.CiaynAgent._estimate_tokens")
def test_estimate_messages_tokens(self, mock_estimate_tokens):
# Setup mock to return different values for different messages
mock_estimate_tokens.side_effect = lambda msg: 10 if isinstance(msg, SystemMessage) else 20
# Test with multiple messages
messages = [self.system_message, self.human_message]
result = estimate_messages_tokens(messages)
# Should be sum of individual token counts (10 + 20)
self.assertEqual(result, 30)
# Test with empty list
result = estimate_messages_tokens([])
self.assertEqual(result, 0)
@patch("ra_aid.anthropic_token_limiter.create_token_counter_wrapper")
@patch("ra_aid.anthropic_token_limiter.anthropic_trim_messages")
def test_state_modifier(self, mock_trim_messages, mock_create_wrapper):
# Setup a proper token counter function that returns integers
def token_counter(msgs):
# Return token count based on number of messages
return len(msgs) * 10
# Configure the mock to return our token counter
mock_create_wrapper.return_value = token_counter
# Configure anthropic_trim_messages to return a subset of messages
mock_trim_messages.return_value = [self.system_message, self.human_message]
# Call state_modifier with a max token limit of 50
result = state_modifier(self.state, self.mock_model, max_input_tokens=50)
# Should return what anthropic_trim_messages returned
self.assertEqual(result, [self.system_message, self.human_message])
# Verify the wrapper was created with the right model
mock_create_wrapper.assert_called_with(self.mock_model.model)
# Verify anthropic_trim_messages was called with the right parameters
mock_trim_messages.assert_called_once()
def test_state_modifier_with_messages(self):
"""Test that state_modifier correctly trims recent messages while preserving the first message when total tokens > max_tokens."""
# Create a state with messages
messages = [
SystemMessage(content="System prompt"),
HumanMessage(content="Human message 1"),
AIMessage(content="AI response 1"),
HumanMessage(content="Human message 2"),
AIMessage(content="AI response 2"),
]
state = AgentState(messages=messages)
model = MagicMock(spec=ChatAnthropic)
model.model = "claude-3-opus-20240229"
with patch("ra_aid.anthropic_token_limiter.create_token_counter_wrapper") as mock_wrapper, \
patch("ra_aid.anthropic_token_limiter.anthropic_trim_messages") as mock_trim:
# Setup mock to return a fixed token count per message
mock_wrapper.return_value = lambda msgs: len(msgs) * 100
# Setup mock to return a subset of messages
mock_trim.return_value = [messages[0], messages[-2], messages[-1]]
result = state_modifier(state, model, max_input_tokens=250)
# Should return what anthropic_trim_messages returned
self.assertEqual(len(result), 3)
self.assertEqual(result[0], messages[0]) # First message preserved
self.assertEqual(result[-1], messages[-1]) # Last message preserved
def test_sonnet_35_state_modifier(self):
"""Test the sonnet 35 state modifier function."""
# Create a state with messages
state = {"messages": [self.system_message, self.human_message, self.ai_message]}
# Test with empty messages
empty_state = {"messages": []}
# Instead of patching trim_messages which has complex internal logic,
# we'll directly patch the sonnet_35_state_modifier's call to trim_messages
with patch("ra_aid.anthropic_token_limiter.trim_messages") as mock_trim:
# Setup mock to return our desired messages
mock_trim.return_value = [self.human_message, self.ai_message]
# Test with empty messages
self.assertEqual(sonnet_35_state_modifier(empty_state), [])
# Test with messages under the limit
result = sonnet_35_state_modifier(state, max_input_tokens=10000)
# Should keep the first message and call trim_messages for the rest
self.assertEqual(len(result), 3)
self.assertEqual(result[0], self.system_message)
self.assertEqual(result[1:], [self.human_message, self.ai_message])
# Verify trim_messages was called with the right parameters
mock_trim.assert_called_once()
# We can check some of the key arguments
call_args = mock_trim.call_args[1]
# The actual value is based on the token estimation logic, not a hard-coded 9000
self.assertIn("max_tokens", call_args)
self.assertEqual(call_args["strategy"], "last")
self.assertEqual(call_args["strategy"], "last")
self.assertEqual(call_args["allow_partial"], False)
self.assertEqual(call_args["include_system"], True)
@patch("ra_aid.anthropic_token_limiter.get_config_repository")
@patch("ra_aid.anthropic_token_limiter.get_model_info")
@patch("ra_aid.anthropic_token_limiter.is_claude_37")
@patch("ra_aid.anthropic_token_limiter.adjust_claude_37_token_limit")
def test_get_model_token_limit_from_litellm(self, mock_adjust, mock_is_claude_37, mock_get_model_info, mock_get_config_repo):
# Use a specific model name instead of DEFAULT_MODEL to avoid test dependency
model_name = "claude-3-7-sonnet-20250219"
# Setup mocks
mock_config = {"provider": "anthropic", "model": model_name}
mock_get_config_repo.return_value.get_all.return_value = mock_config
# Mock litellm's get_model_info to return a token limit
mock_get_model_info.return_value = {"max_input_tokens": 100000}
# Mock is_claude_37 to return True
mock_is_claude_37.return_value = True
# Mock adjust_claude_37_token_limit to return the original value
mock_adjust.return_value = 100000
# Test getting token limit
result = get_model_token_limit(mock_config)
self.assertEqual(result, 100000)
# Verify get_model_info was called with the right model
mock_get_model_info.assert_called_once_with(f"anthropic/{model_name}")
# Verify adjust_claude_37_token_limit was called
mock_adjust.assert_called_once_with(100000, None)
def test_get_model_token_limit_research(self):
"""Test get_model_token_limit with research provider and model."""
config = {
"provider": "openai",
"model": "gpt-4",
"research_provider": "anthropic",
"research_model": "claude-3-7-sonnet-20250219",
}
with patch("ra_aid.anthropic_token_limiter.get_config_repository") as mock_get_config_repo, \
patch("ra_aid.anthropic_token_limiter.get_model_info") as mock_get_info, \
patch("ra_aid.anthropic_token_limiter.adjust_claude_37_token_limit") as mock_adjust:
mock_get_config_repo.return_value.get_all.return_value = config
mock_get_info.return_value = {"max_input_tokens": 150000}
mock_adjust.return_value = 150000
# Call the function to check the return value
token_limit = get_model_token_limit(config, "research")
self.assertEqual(token_limit, 150000)
# Verify get_model_info was called with the research model
mock_get_info.assert_called_once_with("anthropic/claude-3-7-sonnet-20250219")
# Verify adjust_claude_37_token_limit was called
mock_adjust.assert_called_once_with(150000, None)
def test_get_model_token_limit_planner(self):
"""Test get_model_token_limit with planner provider and model."""
config = {
"provider": "openai",
"model": "gpt-4",
"planner_provider": "deepseek",
"planner_model": "dsm-1",
}
with patch("ra_aid.anthropic_token_limiter.get_config_repository") as mock_get_config_repo, \
patch("ra_aid.anthropic_token_limiter.get_model_info") as mock_get_info, \
patch("ra_aid.anthropic_token_limiter.adjust_claude_37_token_limit") as mock_adjust:
mock_get_config_repo.return_value.get_all.return_value = config
mock_get_info.return_value = {"max_input_tokens": 120000}
mock_adjust.return_value = 120000
# Call the function to check the return value
token_limit = get_model_token_limit(config, "planner")
self.assertEqual(token_limit, 120000)
# Verify get_model_info was called with the planner model
mock_get_info.assert_called_once_with("deepseek/dsm-1")
# Verify adjust_claude_37_token_limit was called
mock_adjust.assert_called_once_with(120000, None)
@patch("ra_aid.anthropic_token_limiter.get_config_repository")
@patch("ra_aid.anthropic_token_limiter.get_model_info")
def test_get_model_token_limit_fallback(self, mock_get_model_info, mock_get_config_repo):
# Setup mocks
mock_config = {"provider": "anthropic", "model": "claude-2"}
mock_get_config_repo.return_value.get_all.return_value = mock_config
# Make litellm's get_model_info raise an exception to test fallback
mock_get_model_info.side_effect = Exception("Model not found")
# Test getting token limit from models_params fallback
with patch("ra_aid.anthropic_token_limiter.models_params", {
"anthropic": {
"claude2": {"token_limit": 100000}
}
}):
result = get_model_token_limit(mock_config)
self.assertEqual(result, 100000)
@patch("ra_aid.anthropic_token_limiter.get_config_repository")
@patch("ra_aid.anthropic_token_limiter.get_model_info")
@patch("ra_aid.anthropic_token_limiter.adjust_claude_37_token_limit")
def test_get_model_token_limit_for_different_agent_types(self, mock_adjust, mock_get_model_info, mock_get_config_repo):
# Use specific model names instead of DEFAULT_MODEL to avoid test dependency
claude_model = "claude-3-7-sonnet-20250219"
# Setup mocks for different agent types
mock_config = {
"provider": "anthropic",
"model": claude_model,
"research_provider": "openai",
"research_model": "gpt-4",
"planner_provider": "anthropic",
"planner_model": "claude-3-7-opus-20250301"
}
mock_get_config_repo.return_value.get_all.return_value = mock_config
# Mock different returns for different models
def model_info_side_effect(model_name):
if "claude-3-7-sonnet" in model_name:
return {"max_input_tokens": 200000}
elif "gpt-4" in model_name:
return {"max_input_tokens": 8192}
elif "claude-3-7-opus" in model_name:
return {"max_input_tokens": 250000}
else:
raise Exception(f"Unknown model: {model_name}")
mock_get_model_info.side_effect = model_info_side_effect
# Mock adjust_claude_37_token_limit to return the same values
mock_adjust.side_effect = lambda tokens, model: tokens
# Test default agent type
result = get_model_token_limit(mock_config, "default")
self.assertEqual(result, 200000)
mock_get_model_info.assert_called_with(f"anthropic/{claude_model}")
# Reset mock
mock_get_model_info.reset_mock()
# Test research agent type
result = get_model_token_limit(mock_config, "research")
self.assertEqual(result, 8192)
mock_get_model_info.assert_called_with("openai/gpt-4")
# Reset mock
mock_get_model_info.reset_mock()
# Test planner agent type
result = get_model_token_limit(mock_config, "planner")
self.assertEqual(result, 250000)
mock_get_model_info.assert_called_with("anthropic/claude-3-7-opus-20250301")
def test_get_model_token_limit_anthropic(self):
"""Test get_model_token_limit with Anthropic model."""
config = {"provider": "anthropic", "model": "claude-3-7-sonnet-20250219"}
with patch("ra_aid.anthropic_token_limiter.get_config_repository") as mock_get_config_repo, \
patch("ra_aid.anthropic_token_limiter.models_params") as mock_models_params, \
patch("litellm.get_model_info") as mock_get_info, \
patch("ra_aid.anthropic_token_limiter.adjust_claude_37_token_limit") as mock_adjust:
# Setup mocks
mock_get_config_repo.return_value.get_all.return_value = config
mock_get_info.side_effect = Exception("Model not found")
# Create a mock models_params with claude-3-7
mock_models_params_dict = {
"anthropic": {
"claude-3-7-sonnet-20250219": {"token_limit": 200000}
}
}
mock_models_params.__getitem__.side_effect = mock_models_params_dict.__getitem__
mock_models_params.get.side_effect = mock_models_params_dict.get
# Mock adjust to return the same value
mock_adjust.return_value = 200000
token_limit = get_model_token_limit(config, "default")
self.assertEqual(token_limit, 200000)
def test_get_model_token_limit_openai(self):
"""Test get_model_token_limit with OpenAI model."""
config = {"provider": "openai", "model": "gpt-4"}
with patch("ra_aid.anthropic_token_limiter.get_config_repository") as mock_get_config_repo:
mock_get_config_repo.return_value.get_all.return_value = config
token_limit = get_model_token_limit(config, "default")
self.assertEqual(token_limit, models_params["openai"]["gpt-4"]["token_limit"])
def test_get_model_token_limit_unknown(self):
"""Test get_model_token_limit with unknown provider/model."""
config = {"provider": "unknown", "model": "unknown-model"}
with patch("ra_aid.anthropic_token_limiter.get_config_repository") as mock_get_config_repo:
mock_get_config_repo.return_value.get_all.return_value = config
token_limit = get_model_token_limit(config, "default")
self.assertIsNone(token_limit)
def test_get_model_token_limit_missing_config(self):
"""Test get_model_token_limit with missing configuration."""
config = {}
with patch("ra_aid.anthropic_token_limiter.get_config_repository") as mock_get_config_repo:
mock_get_config_repo.return_value.get_all.return_value = config
token_limit = get_model_token_limit(config, "default")
self.assertIsNone(token_limit)
def test_get_model_token_limit_litellm_success(self):
"""Test get_model_token_limit successfully getting limit from litellm."""
config = {"provider": "anthropic", "model": "claude-3-7-sonnet-20250219"}
with patch("ra_aid.anthropic_token_limiter.get_config_repository") as mock_get_config_repo, \
patch("ra_aid.anthropic_token_limiter.get_model_info") as mock_get_info, \
patch("ra_aid.anthropic_token_limiter.adjust_claude_37_token_limit") as mock_adjust:
mock_get_config_repo.return_value.get_all.return_value = config
mock_get_info.return_value = {"max_input_tokens": 100000}
mock_adjust.return_value = 100000
# Call the function to check the return value
token_limit = get_model_token_limit(config, "default")
self.assertEqual(token_limit, 100000)
# Verify get_model_info was called with the right model
mock_get_info.assert_called_once_with("anthropic/claude-3-7-sonnet-20250219")
mock_adjust.assert_called_once_with(100000, None)
def test_get_model_token_limit_litellm_not_found(self):
"""Test fallback to models_tokens when litellm raises NotFoundError."""
config = {"provider": "anthropic", "model": "claude-3-7-sonnet-20250219"}
with patch("ra_aid.anthropic_token_limiter.get_config_repository") as mock_get_config_repo, \
patch("litellm.get_model_info") as mock_get_info, \
patch("ra_aid.anthropic_token_limiter.models_params") as mock_models_params, \
patch("ra_aid.anthropic_token_limiter.adjust_claude_37_token_limit") as mock_adjust:
mock_get_config_repo.return_value.get_all.return_value = config
mock_get_info.side_effect = litellm.exceptions.NotFoundError(
message="Model not found", model="claude-3-7-sonnet-20250219", llm_provider="anthropic"
)
# Create a mock models_params with claude-3-7
mock_models_params_dict = {
"anthropic": {
"claude-3-7-sonnet-20250219": {"token_limit": 200000}
}
}
mock_models_params.__getitem__.side_effect = mock_models_params_dict.__getitem__
mock_models_params.get.side_effect = mock_models_params_dict.get
# Mock adjust to return the same value
mock_adjust.return_value = 200000
token_limit = get_model_token_limit(config, "default")
self.assertEqual(token_limit, 200000)
def test_get_model_token_limit_litellm_error(self):
"""Test fallback to models_tokens when litellm raises other exceptions."""
config = {"provider": "anthropic", "model": "claude-2"}
with patch("ra_aid.anthropic_token_limiter.get_config_repository") as mock_get_config_repo, \
patch("litellm.get_model_info") as mock_get_info:
mock_get_config_repo.return_value.get_all.return_value = config
mock_get_info.side_effect = Exception("Unknown error")
token_limit = get_model_token_limit(config, "default")
self.assertEqual(token_limit, models_params["anthropic"]["claude2"]["token_limit"])
def test_get_model_token_limit_unexpected_error(self):
"""Test returning None when unexpected errors occur."""
config = None # This will cause an attribute error when accessed
token_limit = get_model_token_limit(config, "default")
self.assertIsNone(token_limit)
def test_adjust_claude_37_token_limit(self):
"""Test adjust_claude_37_token_limit function."""
# Create a mock model
mock_model = MagicMock()
mock_model.model = "claude-3.7-sonnet"
mock_model.max_tokens = 4096
# Test with Claude 3.7 model
result = adjust_claude_37_token_limit(100000, mock_model)
self.assertEqual(result, 95904) # 100000 - 4096
# Test with non-Claude 3.7 model
mock_model.model = "claude-3-opus"
result = adjust_claude_37_token_limit(100000, mock_model)
self.assertEqual(result, 100000) # No adjustment
# Test with None max_input_tokens
result = adjust_claude_37_token_limit(None, mock_model)
self.assertIsNone(result)
# Test with None model
result = adjust_claude_37_token_limit(100000, None)
self.assertEqual(result, 100000)
def test_has_tool_use(self):
"""Test the has_tool_use function."""
# Test with regular AI message
self.assertFalse(has_tool_use(self.ai_message))
# Test with AI message containing tool_use in string content
ai_with_tool_str = AIMessage(content="I'll use a tool_use to help you")
self.assertTrue(has_tool_use(ai_with_tool_str))
# Test with AI message containing tool_use in structured content
ai_with_tool_dict = AIMessage(content=[
{"type": "text", "text": "I'll use a tool to help you"},
{"type": "tool_use", "tool_use": {"name": "calculator", "input": {"expression": "2+2"}}}
])
self.assertTrue(has_tool_use(ai_with_tool_dict))
# Test with AI message containing tool_calls in additional_kwargs
self.assertTrue(has_tool_use(self.ai_with_tool_use))
# Test with non-AI message
self.assertFalse(has_tool_use(self.human_message))
def test_is_tool_pair(self):
"""Test the is_tool_pair function."""
# Test with valid tool pair
self.assertTrue(is_tool_pair(self.ai_with_tool_use, self.tool_message))
# Test with non-tool pair (wrong order)
self.assertFalse(is_tool_pair(self.tool_message, self.ai_with_tool_use))
# Test with non-tool pair (wrong types)
self.assertFalse(is_tool_pair(self.ai_message, self.human_message))
# Test with non-tool pair (AI message without tool use)
self.assertFalse(is_tool_pair(self.ai_message, self.tool_message))
@patch("ra_aid.anthropic_message_utils.has_tool_use")
def test_anthropic_trim_messages_with_tool_use(self, mock_has_tool_use):
"""Test anthropic_trim_messages with a sequence of messages including tool use."""
from ra_aid.anthropic_message_utils import anthropic_trim_messages
# Setup mock for has_tool_use to return True for AI messages at even indices
def side_effect(msg):
if isinstance(msg, AIMessage) and hasattr(msg, 'test_index'):
return msg.test_index % 2 == 0 # Even indices have tool use
return False
mock_has_tool_use.side_effect = side_effect
# Create a sequence of alternating human and AI messages with tool use
messages = []
# Start with system message
system_msg = SystemMessage(content="You are a helpful assistant.")
messages.append(system_msg)
# Add alternating human and AI messages with tool use
for i in range(8):
if i % 2 == 0:
# Human message
msg = HumanMessage(content=f"Human message {i}")
messages.append(msg)
else:
# AI message, every other one has tool use
ai_msg = AIMessage(content=f"AI message {i}")
# Add a test_index attribute to track position
ai_msg.test_index = i
messages.append(ai_msg)
# If this AI message has tool use (even index), add a tool message after it
if i % 4 == 1: # 1, 5, etc.
tool_msg = ToolMessage(
content=f"Tool result {i}",
tool_call_id=f"tool_call_{i}",
name="test_tool"
)
messages.append(tool_msg)
# Define a token counter that returns a fixed value per message
def token_counter(msgs):
return len(msgs) * 1000
# Test with a token limit that will require trimming
result = anthropic_trim_messages(
messages,
token_counter=token_counter,
max_tokens=5000, # This will allow 5 messages
strategy="last",
allow_partial=False,
include_system=True,
num_messages_to_keep=2 # Keep system and first human message
)
# We should have kept the first 2 messages (system + human)
self.assertEqual(len(result), 5) # 2 kept + 3 more that fit in token limit
self.assertEqual(result[0], system_msg)
# Verify that we don't have any AI messages with tool use that aren't followed by a tool message
for i in range(len(result) - 1):
if isinstance(result[i], AIMessage) and mock_has_tool_use(result[i]):
self.assertTrue(isinstance(result[i+1], ToolMessage),
f"AI message with tool use at index {i} not followed by ToolMessage")
if __name__ == "__main__":
unittest.main()