313 lines
11 KiB
Python
313 lines
11 KiB
Python
"""Utilities for handling Anthropic-specific message formats and trimming."""
|
|
|
|
from typing import Callable, List, Literal, Optional, Sequence, Union, cast
|
|
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
BaseMessage,
|
|
ChatMessage,
|
|
FunctionMessage,
|
|
HumanMessage,
|
|
SystemMessage,
|
|
ToolMessage,
|
|
)
|
|
|
|
|
|
def _is_message_type(
|
|
message: BaseMessage, message_types: Union[str, type, List[Union[str, type]]]
|
|
) -> bool:
|
|
"""Check if a message is of a specific type or types.
|
|
|
|
Args:
|
|
message: The message to check
|
|
message_types: Type(s) to check against (string name or class)
|
|
|
|
Returns:
|
|
bool: True if message matches any of the specified types
|
|
"""
|
|
if not isinstance(message_types, list):
|
|
message_types = [message_types]
|
|
|
|
types_str = [t for t in message_types if isinstance(t, str)]
|
|
types_classes = tuple(t for t in message_types if isinstance(t, type))
|
|
|
|
return message.type in types_str or isinstance(message, types_classes)
|
|
|
|
|
|
def has_tool_use(message: BaseMessage) -> bool:
|
|
"""Check if a message contains tool use.
|
|
|
|
Args:
|
|
message: The message to check
|
|
|
|
Returns:
|
|
bool: True if the message contains tool use
|
|
"""
|
|
if not isinstance(message, AIMessage):
|
|
return False
|
|
|
|
# Check content for tool_use
|
|
if isinstance(message.content, str) and "tool_use" in message.content:
|
|
return True
|
|
|
|
# Check content list for tool_use blocks
|
|
if isinstance(message.content, list):
|
|
for item in message.content:
|
|
if isinstance(item, dict) and item.get("type") == "tool_use":
|
|
return True
|
|
|
|
# Check additional_kwargs for tool_calls
|
|
if hasattr(message, "additional_kwargs") and message.additional_kwargs.get(
|
|
"tool_calls"
|
|
):
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
def is_tool_pair(message1: BaseMessage, message2: BaseMessage) -> bool:
|
|
"""Check if two messages form a tool use/result pair.
|
|
|
|
Args:
|
|
message1: First message
|
|
message2: Second message
|
|
|
|
Returns:
|
|
bool: True if the messages form a tool use/result pair
|
|
"""
|
|
return (
|
|
isinstance(message1, AIMessage)
|
|
and isinstance(message2, ToolMessage)
|
|
and has_tool_use(message1)
|
|
)
|
|
|
|
|
|
|
|
def anthropic_trim_messages(
|
|
messages: Sequence[BaseMessage],
|
|
*,
|
|
max_tokens: int,
|
|
token_counter: Callable[[List[BaseMessage]], int],
|
|
strategy: Literal["first", "last"] = "last",
|
|
num_messages_to_keep: int = 2,
|
|
allow_partial: bool = False,
|
|
include_system: bool = True,
|
|
start_on: Optional[Union[str, type, List[Union[str, type]]]] = None,
|
|
) -> List[BaseMessage]:
|
|
"""Trim messages to fit within a token limit, with Anthropic-specific handling.
|
|
|
|
Warning - not fully implemented - last strategy is supported and test, not
|
|
allow partial, not 'first' strategy either.
|
|
This function is similar to langchain_core's trim_messages but with special
|
|
handling for Anthropic message formats to avoid API errors.
|
|
|
|
It always keeps the first num_messages_to_keep messages.
|
|
|
|
Args:
|
|
messages: Sequence of messages to trim
|
|
max_tokens: Maximum number of tokens allowed
|
|
token_counter: Function to count tokens in messages
|
|
strategy: Whether to keep the "first" or "last" messages
|
|
allow_partial: Whether to allow partial messages
|
|
include_system: Whether to always include the system message
|
|
start_on: Message type to start on (only for "last" strategy)
|
|
|
|
Returns:
|
|
List[BaseMessage]: Trimmed messages that fit within token limit
|
|
"""
|
|
if not messages:
|
|
return []
|
|
|
|
messages = list(messages)
|
|
|
|
# Always keep the first num_messages_to_keep messages
|
|
kept_messages = messages[:num_messages_to_keep]
|
|
remaining_msgs = messages[num_messages_to_keep:]
|
|
|
|
|
|
# For Anthropic, we need to maintain the conversation structure where:
|
|
# 1. Every AIMessage with tool_use must be followed by a ToolMessage
|
|
# 2. Every AIMessage that follows a ToolMessage must start with a tool_result
|
|
|
|
# First, check if we have any tool_use in the messages
|
|
has_tool_use_anywhere = any(has_tool_use(msg) for msg in messages)
|
|
|
|
# If we have tool_use anywhere, we need to be very careful about trimming
|
|
if has_tool_use_anywhere:
|
|
# For safety, just keep all messages if we're under the token limit
|
|
if token_counter(messages) <= max_tokens:
|
|
return messages
|
|
|
|
# We need to identify all tool_use/tool_result relationships
|
|
# First, find all AIMessage+ToolMessage pairs
|
|
pairs = []
|
|
i = 0
|
|
while i < len(messages) - 1:
|
|
if is_tool_pair(messages[i], messages[i + 1]):
|
|
pairs.append((i, i + 1))
|
|
i += 2
|
|
else:
|
|
i += 1
|
|
|
|
# For Anthropic, we need to ensure that:
|
|
# 1. If we include an AIMessage with tool_use, we must include the following ToolMessage
|
|
# 2. If we include a ToolMessage, we must include the preceding AIMessage with tool_use
|
|
|
|
# The safest approach is to always keep complete AIMessage+ToolMessage pairs together
|
|
# First, identify all complete pairs
|
|
complete_pairs = []
|
|
for start, end in pairs:
|
|
complete_pairs.append((start, end))
|
|
|
|
# Now we'll build our result, starting with the kept_messages
|
|
# But we need to be careful about the first message if it has tool_use
|
|
result = []
|
|
|
|
# Check if the last message in kept_messages has tool_use
|
|
if (
|
|
kept_messages
|
|
and isinstance(kept_messages[-1], AIMessage)
|
|
and has_tool_use(kept_messages[-1])
|
|
):
|
|
# We need to find the corresponding ToolMessage
|
|
for i, (ai_idx, tool_idx) in enumerate(pairs):
|
|
if messages[ai_idx] is kept_messages[-1]:
|
|
# Found the pair, add all kept_messages except the last one
|
|
result.extend(kept_messages[:-1])
|
|
# Add the AIMessage and ToolMessage as a pair
|
|
result.extend([messages[ai_idx], messages[tool_idx]])
|
|
# Remove this pair from the list of pairs to process later
|
|
pairs = pairs[:i] + pairs[i + 1 :]
|
|
break
|
|
else:
|
|
# If we didn't find a matching pair, just add all kept_messages
|
|
result.extend(kept_messages)
|
|
else:
|
|
# No tool_use in the last kept message, just add all kept_messages
|
|
result.extend(kept_messages)
|
|
|
|
# If we're using the "last" strategy, we'll try to include pairs from the end
|
|
if strategy == "last":
|
|
# First collect all pairs we can include within the token limit
|
|
pairs_to_include = []
|
|
|
|
# Process pairs from the end (newest first)
|
|
for pair_idx, (ai_idx, tool_idx) in enumerate(reversed(complete_pairs)):
|
|
# Try adding this pair
|
|
test_msgs = result.copy()
|
|
|
|
# Add all previously selected pairs
|
|
for prev_ai_idx, prev_tool_idx in pairs_to_include:
|
|
test_msgs.extend([messages[prev_ai_idx], messages[prev_tool_idx]])
|
|
|
|
# Add this pair
|
|
test_msgs.extend([messages[ai_idx], messages[tool_idx]])
|
|
|
|
if token_counter(test_msgs) <= max_tokens:
|
|
# This pair fits, add it to our list
|
|
pairs_to_include.append((ai_idx, tool_idx))
|
|
else:
|
|
# This pair would exceed the token limit
|
|
break
|
|
|
|
# Now add the pairs in the correct order
|
|
# Sort by index to maintain the original conversation flow
|
|
pairs_to_include.sort(key=lambda x: x[0])
|
|
for ai_idx, tool_idx in pairs_to_include:
|
|
result.extend([messages[ai_idx], messages[tool_idx]])
|
|
|
|
# No need to sort - we've already added messages in the correct order
|
|
|
|
return result
|
|
|
|
# If no tool_use, proceed with normal segmentation
|
|
segments = []
|
|
i = 0
|
|
|
|
# Group messages into segments
|
|
while i < len(remaining_msgs):
|
|
segments.append([remaining_msgs[i]])
|
|
i += 1
|
|
|
|
# Now we have segments that maintain the required structure
|
|
# We'll add segments from the end (for "last" strategy) or beginning (for "first")
|
|
# until we hit the token limit
|
|
|
|
if strategy == "last":
|
|
# If we have no segments, just return kept_messages
|
|
if not segments:
|
|
return kept_messages
|
|
|
|
result = []
|
|
|
|
# Process segments from the end
|
|
for i, segment in enumerate(reversed(segments)):
|
|
# Try adding this segment
|
|
test_msgs = segment + result
|
|
|
|
if token_counter(kept_messages + test_msgs) <= max_tokens:
|
|
result = segment + result
|
|
else:
|
|
# This segment would exceed the token limit
|
|
break
|
|
|
|
final_result = kept_messages + result
|
|
|
|
# For Anthropic, we need to ensure the conversation follows a valid structure
|
|
# We'll do a final check of the entire conversation
|
|
|
|
# Validate the conversation structure
|
|
valid_result = []
|
|
i = 0
|
|
|
|
# Process messages in order
|
|
while i < len(final_result):
|
|
current_msg = final_result[i]
|
|
|
|
# If this is an AIMessage with tool_use, it must be followed by a ToolMessage
|
|
if (
|
|
i < len(final_result) - 1
|
|
and isinstance(current_msg, AIMessage)
|
|
and has_tool_use(current_msg)
|
|
):
|
|
if isinstance(final_result[i + 1], ToolMessage):
|
|
# This is a valid tool_use + tool_result pair
|
|
valid_result.append(current_msg)
|
|
valid_result.append(final_result[i + 1])
|
|
i += 2
|
|
else:
|
|
# Invalid: AIMessage with tool_use not followed by ToolMessage
|
|
# Skip this message to maintain valid structure
|
|
i += 1
|
|
else:
|
|
# Regular message, just add it
|
|
valid_result.append(current_msg)
|
|
i += 1
|
|
|
|
# Final check: don't end with an AIMessage that has tool_use
|
|
if (
|
|
valid_result
|
|
and isinstance(valid_result[-1], AIMessage)
|
|
and has_tool_use(valid_result[-1])
|
|
):
|
|
valid_result.pop() # Remove the last message
|
|
|
|
return valid_result
|
|
|
|
elif strategy == "first":
|
|
result = []
|
|
|
|
# Process segments from the beginning
|
|
for i, segment in enumerate(segments):
|
|
# Try adding this segment
|
|
test_msgs = result + segment
|
|
if token_counter(kept_messages + test_msgs) <= max_tokens:
|
|
result = result + segment
|
|
else:
|
|
# This segment would exceed the token limit
|
|
break
|
|
|
|
final_result = kept_messages + result
|
|
|
|
return final_result
|