RA.Aid/tests/ra_aid/test_agent_utils.py

246 lines
8.4 KiB
Python

"""Unit tests for agent_utils.py."""
import pytest
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from unittest.mock import Mock, patch
from langchain_core.language_models import BaseChatModel
import litellm
from ra_aid.models_tokens import DEFAULT_TOKEN_LIMIT
from ra_aid.agent_utils import state_modifier, AgentState
from ra_aid.agent_utils import create_agent, get_model_token_limit
from ra_aid.models_tokens import models_tokens
@pytest.fixture
def mock_model():
"""Fixture providing a mock LLM model."""
model = Mock(spec=BaseChatModel)
return model
@pytest.fixture
def mock_memory():
"""Fixture providing a mock global memory store."""
with patch("ra_aid.agent_utils._global_memory") as mock_mem:
mock_mem.get.return_value = {}
yield mock_mem
def test_get_model_token_limit_anthropic(mock_memory):
"""Test get_model_token_limit with Anthropic model."""
config = {"provider": "anthropic", "model": "claude2"}
token_limit = get_model_token_limit(config)
assert token_limit == models_tokens["anthropic"]["claude2"]
def test_get_model_token_limit_openai(mock_memory):
"""Test get_model_token_limit with OpenAI model."""
config = {"provider": "openai", "model": "gpt-4"}
token_limit = get_model_token_limit(config)
assert token_limit == models_tokens["openai"]["gpt-4"]
def test_get_model_token_limit_unknown(mock_memory):
"""Test get_model_token_limit with unknown provider/model."""
config = {"provider": "unknown", "model": "unknown-model"}
token_limit = get_model_token_limit(config)
assert token_limit is None
def test_get_model_token_limit_missing_config(mock_memory):
"""Test get_model_token_limit with missing configuration."""
config = {}
token_limit = get_model_token_limit(config)
assert token_limit is None
def test_get_model_token_limit_litellm_success():
"""Test get_model_token_limit successfully getting limit from litellm."""
config = {"provider": "anthropic", "model": "claude-2"}
with patch('ra_aid.agent_utils.get_model_info') as mock_get_info:
mock_get_info.return_value = {"max_input_tokens": 100000}
token_limit = get_model_token_limit(config)
assert token_limit == 100000
def test_get_model_token_limit_litellm_not_found():
"""Test fallback to models_tokens when litellm raises NotFoundError."""
config = {"provider": "anthropic", "model": "claude-2"}
with patch('ra_aid.agent_utils.get_model_info') as mock_get_info:
mock_get_info.side_effect = litellm.exceptions.NotFoundError(
message="Model not found",
model="claude-2",
llm_provider="anthropic"
)
token_limit = get_model_token_limit(config)
assert token_limit == models_tokens["anthropic"]["claude2"]
def test_get_model_token_limit_litellm_error():
"""Test fallback to models_tokens when litellm raises other exceptions."""
config = {"provider": "anthropic", "model": "claude-2"}
with patch('ra_aid.agent_utils.get_model_info') as mock_get_info:
mock_get_info.side_effect = Exception("Unknown error")
token_limit = get_model_token_limit(config)
assert token_limit == models_tokens["anthropic"]["claude2"]
def test_get_model_token_limit_unexpected_error():
"""Test returning None when unexpected errors occur."""
config = None # This will cause an attribute error when accessed
token_limit = get_model_token_limit(config)
assert token_limit is None
def test_create_agent_anthropic(mock_model, mock_memory):
"""Test create_agent with Anthropic Claude model."""
mock_memory.get.return_value = {"provider": "anthropic", "model": "claude-2"}
with patch("ra_aid.agent_utils.create_react_agent") as mock_react:
mock_react.return_value = "react_agent"
agent = create_agent(mock_model, [])
assert agent == "react_agent"
mock_react.assert_called_once_with(
mock_model, [], state_modifier=mock_react.call_args[1]["state_modifier"]
)
def test_create_agent_openai(mock_model, mock_memory):
"""Test create_agent with OpenAI model."""
mock_memory.get.return_value = {"provider": "openai", "model": "gpt-4"}
with patch("ra_aid.agent_utils.CiaynAgent") as mock_ciayn:
mock_ciayn.return_value = "ciayn_agent"
agent = create_agent(mock_model, [])
assert agent == "ciayn_agent"
mock_ciayn.assert_called_once_with(
mock_model, [], max_tokens=models_tokens["openai"]["gpt-4"]
)
def test_create_agent_no_token_limit(mock_model, mock_memory):
"""Test create_agent when no token limit is found."""
mock_memory.get.return_value = {"provider": "unknown", "model": "unknown-model"}
with patch("ra_aid.agent_utils.CiaynAgent") as mock_ciayn:
mock_ciayn.return_value = "ciayn_agent"
agent = create_agent(mock_model, [])
assert agent == "ciayn_agent"
mock_ciayn.assert_called_once_with(
mock_model, [], max_tokens=DEFAULT_TOKEN_LIMIT
)
def test_create_agent_missing_config(mock_model, mock_memory):
"""Test create_agent with missing configuration."""
mock_memory.get.return_value = {"provider": "openai"}
with patch("ra_aid.agent_utils.CiaynAgent") as mock_ciayn:
mock_ciayn.return_value = "ciayn_agent"
agent = create_agent(mock_model, [])
assert agent == "ciayn_agent"
mock_ciayn.assert_called_once_with(
mock_model,
[],
max_tokens=DEFAULT_TOKEN_LIMIT,
)
@pytest.fixture
def mock_messages():
"""Fixture providing mock message objects."""
return [
SystemMessage(content="System prompt"),
HumanMessage(content="Human message 1"),
AIMessage(content="AI response 1"),
HumanMessage(content="Human message 2"),
AIMessage(content="AI response 2"),
]
def test_state_modifier(mock_messages):
"""Test that state_modifier correctly trims recent messages while preserving the first message when total tokens > max_tokens."""
state = AgentState(messages=mock_messages)
with patch(
"ra_aid.agents.ciayn_agent.CiaynAgent._estimate_tokens"
) as mock_estimate:
mock_estimate.side_effect = lambda msg: 100 if msg else 0
result = state_modifier(state, max_input_tokens=250)
assert len(result) < len(mock_messages)
assert isinstance(result[0], SystemMessage)
assert result[-1] == mock_messages[-1]
def test_create_agent_with_checkpointer(mock_model, mock_memory):
"""Test create_agent with checkpointer argument."""
mock_memory.get.return_value = {"provider": "openai", "model": "gpt-4"}
mock_checkpointer = Mock()
with patch("ra_aid.agent_utils.CiaynAgent") as mock_ciayn:
mock_ciayn.return_value = "ciayn_agent"
agent = create_agent(mock_model, [], checkpointer=mock_checkpointer)
assert agent == "ciayn_agent"
mock_ciayn.assert_called_once_with(
mock_model, [], max_tokens=models_tokens["openai"]["gpt-4"]
)
def test_create_agent_anthropic_token_limiting_enabled(mock_model, mock_memory):
"""Test create_agent sets up token limiting for Claude models when enabled."""
mock_memory.get.return_value = {
"provider": "anthropic",
"model": "claude-2",
"limit_tokens": True,
}
with (
patch("ra_aid.agent_utils.create_react_agent") as mock_react,
patch("ra_aid.agent_utils.get_model_token_limit") as mock_limit,
):
mock_react.return_value = "react_agent"
mock_limit.return_value = 100000
agent = create_agent(mock_model, [])
assert agent == "react_agent"
args = mock_react.call_args
assert "state_modifier" in args[1]
assert callable(args[1]["state_modifier"])
def test_create_agent_anthropic_token_limiting_disabled(mock_model, mock_memory):
"""Test create_agent doesn't set up token limiting for Claude models when disabled."""
mock_memory.get.return_value = {
"provider": "anthropic",
"model": "claude-2",
"limit_tokens": False,
}
with (
patch("ra_aid.agent_utils.create_react_agent") as mock_react,
patch("ra_aid.agent_utils.get_model_token_limit") as mock_limit,
):
mock_react.return_value = "react_agent"
mock_limit.return_value = 100000
agent = create_agent(mock_model, [])
assert agent == "react_agent"
mock_react.assert_called_once_with(mock_model, [])