RA.Aid/ra_aid/__main__.py

396 lines
15 KiB
Python

import argparse
import sys
from typing import Optional
from rich.panel import Panel
from rich.markdown import Markdown
from rich.console import Console
from langchain_core.messages import HumanMessage
from langgraph.checkpoint.memory import MemorySaver
from langgraph.prebuilt import create_react_agent
from ra_aid.env import validate_environment
from ra_aid.tools.memory import _global_memory, get_related_files, get_memory_value
from ra_aid import print_agent_output, print_stage_header, print_task_header, print_error
from ra_aid.prompts import (
RESEARCH_PROMPT,
PLANNING_PROMPT,
IMPLEMENTATION_PROMPT,
CHAT_PROMPT,
EXPERT_PROMPT_SECTION_RESEARCH,
EXPERT_PROMPT_SECTION_PLANNING,
EXPERT_PROMPT_SECTION_IMPLEMENTATION,
HUMAN_PROMPT_SECTION_RESEARCH,
HUMAN_PROMPT_SECTION_PLANNING,
HUMAN_PROMPT_SECTION_IMPLEMENTATION
)
import time
from anthropic import APIError, APITimeoutError, RateLimitError, InternalServerError
from ra_aid.llm import initialize_llm
from ra_aid.tool_configs import (
get_read_only_tools,
get_research_tools,
get_planning_tools,
get_implementation_tools,
get_chat_tools
)
def parse_arguments():
parser = argparse.ArgumentParser(
description='RA.Aid - AI Agent for executing programming and research tasks',
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog='''
Examples:
ra-aid -m "Add error handling to the database module"
ra-aid -m "Explain the authentication flow" --research-only
'''
)
parser.add_argument(
'-m', '--message',
type=str,
help='The task or query to be executed by the agent'
)
parser.add_argument(
'--research-only',
action='store_true',
help='Only perform research without implementation'
)
parser.add_argument(
'--provider',
type=str,
default='anthropic',
choices=['anthropic', 'openai', 'openrouter', 'openai-compatible'],
help='The LLM provider to use'
)
parser.add_argument(
'--model',
type=str,
help='The model name to use (required for non-Anthropic providers)'
)
parser.add_argument(
'--cowboy-mode',
action='store_true',
help='Skip interactive approval for shell commands'
)
parser.add_argument(
'--expert-provider',
type=str,
default='openai',
choices=['anthropic', 'openai', 'openrouter', 'openai-compatible'],
help='The LLM provider to use for expert knowledge queries (default: openai)'
)
parser.add_argument(
'--expert-model',
type=str,
help='The model name to use for expert knowledge queries (required for non-OpenAI providers)'
)
parser.add_argument(
'--hil', '-H',
action='store_true',
help='Enable human-in-the-loop mode, where the agent can prompt the user for additional information.'
)
parser.add_argument(
'--chat',
action='store_true',
help='Enable chat mode with direct human interaction (implies --hil)'
)
args = parser.parse_args()
# Set hil=True when chat mode is enabled
if args.chat:
args.hil = True
# Set default model for Anthropic, require model for other providers
if args.provider == 'anthropic':
if not args.model:
args.model = 'claude-3-5-sonnet-20241022'
elif not args.model:
parser.error(f"--model is required when using provider '{args.provider}'")
# Validate expert model requirement
if args.expert_provider != 'openai' and not args.expert_model:
parser.error(f"--expert-model is required when using expert provider '{args.expert_provider}'")
return args
# Create console instance
console = Console()
# Create individual memory objects for each agent
research_memory = MemorySaver()
planning_memory = MemorySaver()
implementation_memory = MemorySaver()
def is_informational_query() -> bool:
"""Determine if the current query is informational based on implementation_requested state."""
return _global_memory.get('config', {}).get('research_only', False) or not is_stage_requested('implementation')
def is_stage_requested(stage: str) -> bool:
"""Check if a stage has been requested to proceed."""
if stage == 'implementation':
return _global_memory.get('implementation_requested', False)
return False
def run_agent_with_retry(agent, prompt: str, config: dict) -> Optional[str]:
"""Run an agent with retry logic for internal server errors and task completion handling.
Args:
agent: The agent to run
prompt: The prompt to send to the agent
config: Configuration dictionary for the agent
Returns:
Optional[str]: The completion message if task was completed, None otherwise
Handles API errors with exponential backoff retry logic and checks for task
completion after each chunk of output.
"""
max_retries = 20
base_delay = 1 # Initial delay in seconds
for attempt in range(max_retries):
try:
for chunk in agent.stream(
{"messages": [HumanMessage(content=prompt)]},
config
):
print_agent_output(chunk)
# Check for task completion after each chunk
if _global_memory.get('task_completed'):
completion_msg = _global_memory.get('completion_message', 'Task was completed successfully.')
console.print(Panel(
Markdown(completion_msg),
title="✅ Task Completed",
style="green"
))
return completion_msg
break
except (InternalServerError, APITimeoutError, RateLimitError, APIError) as e:
if attempt == max_retries - 1:
raise RuntimeError(f"Max retries ({max_retries}) exceeded. Last error: {str(e)}")
delay = base_delay * (2 ** attempt) # Exponential backoff
error_type = e.__class__.__name__
print_error(f"Encountered {error_type}: {str(e)}. Retrying in {delay} seconds... (Attempt {attempt + 1}/{max_retries})")
time.sleep(delay)
continue
def run_implementation_stage(base_task, tasks, plan, related_files, model, expert_enabled: bool):
"""Run implementation stage with a distinct agent for each task."""
if not is_stage_requested('implementation'):
print_stage_header("Implementation Stage Skipped")
return
print_stage_header("Implementation Stage")
# Get tasks directly from memory, maintaining order by ID
task_list = [task for _, task in sorted(_global_memory['tasks'].items())]
print_task_header(f"Found {len(task_list)} tasks to implement")
for i, task in enumerate(task_list, 1):
print_task_header(task)
# Create a unique memory instance for this task
task_memory = MemorySaver()
# Create a fresh agent for each task
task_agent = create_react_agent(model, get_implementation_tools(expert_enabled=expert_enabled), checkpointer=task_memory)
# Construct task-specific prompt
expert_section = EXPERT_PROMPT_SECTION_IMPLEMENTATION if expert_enabled else ""
human_section = HUMAN_PROMPT_SECTION_IMPLEMENTATION if _global_memory.get('config', {}).get('hil', False) else ""
task_prompt = (IMPLEMENTATION_PROMPT).format(
plan=plan,
key_facts=get_memory_value('key_facts'),
key_snippets=get_memory_value('key_snippets'),
task=task,
related_files="\n".join(related_files),
base_task=base_task,
expert_section=expert_section,
human_section=human_section
)
# Run agent for this task
run_agent_with_retry(task_agent, task_prompt, {"configurable": {"thread_id": "abc123"}, "recursion_limit": 100})
def run_research_subtasks(base_task: str, config: dict, model, expert_enabled: bool):
"""Run research subtasks with separate agents."""
subtasks = _global_memory.get('research_subtasks', [])
if not subtasks:
return
print_stage_header("Research Subtasks")
# Get tools for subtask agents (excluding request_research_subtask and implementation)
research_only = _global_memory.get('config', {}).get('research_only', False)
subtask_tools = [
t for t in get_research_tools(research_only=research_only, expert_enabled=expert_enabled)
if t.name not in ['request_research_subtask']
]
for i, subtask in enumerate(subtasks, 1):
print_task_header(f"Research Subtask {i}/{len(subtasks)}")
# Create fresh memory and agent for each subtask
subtask_memory = MemorySaver()
subtask_agent = create_react_agent(
model,
subtask_tools,
checkpointer=subtask_memory
)
# Run the subtask agent
expert_section = EXPERT_PROMPT_SECTION_RESEARCH if expert_enabled else ""
human_section = HUMAN_PROMPT_SECTION_RESEARCH if config.get('hil', False) else ""
subtask_prompt = f"Base Task: {base_task}\nResearch Subtask: {subtask}\n\n{RESEARCH_PROMPT.format(
base_task=base_task,
research_only_note='',
expert_section=expert_section,
human_section=human_section
)}"
run_agent_with_retry(subtask_agent, subtask_prompt, config)
def main():
"""Main entry point for the ra-aid command line tool."""
try:
args = parse_arguments()
expert_enabled, expert_missing = validate_environment(args) # Will exit if main env vars missing
if expert_missing:
console.print(Panel(
f"[yellow]Expert tools disabled due to missing configuration:[/yellow]\n" +
"\n".join(f"- {m}" for m in expert_missing) +
"\nSet the required environment variables or args to enable expert mode.",
title="Expert Tools Disabled",
style="yellow"
))
# Create the base model after validation
model = initialize_llm(args.provider, args.model)
# Handle chat mode
if args.chat:
print_stage_header("Chat Mode")
# Create chat agent with appropriate tools
chat_agent = create_react_agent(
model,
get_chat_tools(expert_enabled=expert_enabled),
checkpointer=MemorySaver()
)
# Run chat agent with CHAT_PROMPT
config = {
"configurable": {"thread_id": "abc123"},
"recursion_limit": 100,
"chat_mode": True,
"cowboy_mode": args.cowboy_mode,
"hil": True # Always true in chat mode
}
# Store config in global memory
_global_memory['config'] = config
_global_memory['config']['expert_provider'] = args.expert_provider
_global_memory['config']['expert_model'] = args.expert_model
# Run chat agent and exit
run_agent_with_retry(chat_agent, CHAT_PROMPT, config)
return
# Validate message is provided
if not args.message:
print_error("--message is required")
sys.exit(1)
base_task = args.message
config = {
"configurable": {
"thread_id": "abc123"
},
"recursion_limit": 100,
"research_only": args.research_only,
"cowboy_mode": args.cowboy_mode
}
# Store config in global memory for access by is_informational_query
_global_memory['config'] = config
# Store expert provider and model in config
_global_memory['config']['expert_provider'] = args.expert_provider
_global_memory['config']['expert_model'] = args.expert_model
# Run research stage
print_stage_header("Research Stage")
# Create research agent
research_agent = create_react_agent(
model,
get_research_tools(
research_only=_global_memory.get('config', {}).get('research_only', False),
expert_enabled=expert_enabled,
human_interaction=args.hil
),
checkpointer=research_memory
)
expert_section = EXPERT_PROMPT_SECTION_RESEARCH if expert_enabled else ""
human_section = HUMAN_PROMPT_SECTION_RESEARCH if args.hil else ""
research_prompt = RESEARCH_PROMPT.format(
expert_section=expert_section,
human_section=human_section,
base_task=base_task,
research_only_note='' if args.research_only else ' Only request implementation if the user explicitly asked for changes to be made.'
)
# Run research agent
run_agent_with_retry(research_agent, research_prompt, config)
# Run any research subtasks
run_research_subtasks(base_task, config, model, expert_enabled=expert_enabled)
# Proceed with planning and implementation if not an informational query
if not is_informational_query():
print_stage_header("Planning Stage")
# Create planning agent
planning_agent = create_react_agent(model, get_planning_tools(expert_enabled=expert_enabled), checkpointer=planning_memory)
expert_section = EXPERT_PROMPT_SECTION_PLANNING if expert_enabled else ""
human_section = HUMAN_PROMPT_SECTION_PLANNING if args.hil else ""
planning_prompt = PLANNING_PROMPT.format(
expert_section=expert_section,
human_section=human_section,
base_task=base_task,
research_notes=get_memory_value('research_notes'),
related_files="\n".join(get_related_files()),
key_facts=get_memory_value('key_facts'),
key_snippets=get_memory_value('key_snippets'),
research_only_note='' if args.research_only else ' Only request implementation if the user explicitly asked for changes to be made.'
)
# Run planning agent
run_agent_with_retry(planning_agent, planning_prompt, config)
# Run implementation stage with task-specific agents
run_implementation_stage(
base_task,
get_memory_value('tasks'),
get_memory_value('plan'),
get_related_files(),
model,
expert_enabled=expert_enabled
)
except KeyboardInterrupt:
console.print("\n[red]Operation cancelled by user[/red]")
sys.exit(1)
if __name__ == "__main__":
main()