RA.Aid/tests/ra_aid/test_llm.py

612 lines
19 KiB
Python

import os
from dataclasses import dataclass
from unittest import mock
from unittest.mock import Mock, patch
import pytest
from langchain_anthropic.chat_models import ChatAnthropic
from langchain_core.messages import HumanMessage
from langchain_google_genai.chat_models import ChatGoogleGenerativeAI
from langchain_openai.chat_models import ChatOpenAI
from ra_aid.agents.ciayn_agent import CiaynAgent
from ra_aid.env import validate_environment
from ra_aid.llm import (
create_llm_client,
get_available_openai_models,
get_env_var,
get_provider_config,
initialize_expert_llm,
initialize_llm,
select_expert_model,
)
@pytest.fixture
def clean_env(monkeypatch):
"""Remove relevant environment variables before each test"""
env_vars = [
"ANTHROPIC_API_KEY",
"OPENAI_API_KEY",
"OPENROUTER_API_KEY",
"OPENAI_API_BASE",
"EXPERT_ANTHROPIC_API_KEY",
"EXPERT_OPENAI_API_KEY",
"EXPERT_OPENROUTER_API_KEY",
"EXPERT_OPENAI_API_BASE",
"GEMINI_API_KEY",
"EXPERT_GEMINI_API_KEY",
]
for var in env_vars:
monkeypatch.delenv(var, raising=False)
@pytest.fixture
def mock_openai():
"""
Mock ChatOpenAI class for testing OpenAI provider initialization.
Prevents actual API calls during testing.
"""
with patch("ra_aid.llm.ChatOpenAI") as mock:
mock.return_value = Mock(spec=ChatOpenAI)
yield mock
def test_initialize_expert_defaults(clean_env, mock_openai, monkeypatch):
"""Test expert LLM initialization with explicit parameters."""
monkeypatch.setenv("EXPERT_OPENAI_API_KEY", "test-key")
_llm = initialize_expert_llm("openai", "o1")
mock_openai.assert_called_once_with(
api_key="test-key",
model="o1",
reasoning_effort="high",
timeout=180,
max_retries=5,
)
def test_initialize_expert_openai_custom(clean_env, mock_openai, monkeypatch):
"""Test expert OpenAI initialization with custom parameters."""
monkeypatch.setenv("EXPERT_OPENAI_API_KEY", "test-key")
_llm = initialize_expert_llm("openai", "gpt-4-preview")
mock_openai.assert_called_once_with(
api_key="test-key",
model="gpt-4-preview",
temperature=0,
reasoning_effort="high",
timeout=180,
max_retries=5,
)
def test_initialize_expert_gemini(clean_env, mock_gemini, monkeypatch):
"""Test expert Gemini initialization."""
monkeypatch.setenv("EXPERT_GEMINI_API_KEY", "test-key")
_llm = initialize_expert_llm("gemini", "gemini-2.0-flash-thinking-exp-1219")
mock_gemini.assert_called_once_with(
api_key="test-key",
model="gemini-2.0-flash-thinking-exp-1219",
temperature=0,
timeout=180,
max_retries=5,
)
def test_initialize_expert_anthropic(clean_env, mock_anthropic, monkeypatch):
"""Test expert Anthropic initialization."""
monkeypatch.setenv("EXPERT_ANTHROPIC_API_KEY", "test-key")
_llm = initialize_expert_llm("anthropic", "claude-3")
mock_anthropic.assert_called_once_with(
api_key="test-key",
model_name="claude-3",
temperature=0,
timeout=180,
max_retries=5,
)
def test_initialize_expert_openrouter(clean_env, mock_openai, monkeypatch):
"""Test expert OpenRouter initialization."""
monkeypatch.setenv("EXPERT_OPENROUTER_API_KEY", "test-key")
_llm = initialize_expert_llm("openrouter", "models/mistral-large")
mock_openai.assert_called_once_with(
api_key="test-key",
base_url="https://openrouter.ai/api/v1",
model="models/mistral-large",
temperature=0,
timeout=180,
max_retries=5,
)
def test_initialize_expert_openai_compatible(clean_env, mock_openai, monkeypatch):
"""Test expert OpenAI-compatible initialization."""
monkeypatch.setenv("EXPERT_OPENAI_API_KEY", "test-key")
monkeypatch.setenv("EXPERT_OPENAI_API_BASE", "http://test-url")
_llm = initialize_expert_llm("openai-compatible", "local-model")
mock_openai.assert_called_once_with(
api_key="test-key",
base_url="http://test-url",
model="local-model",
temperature=0,
timeout=180,
max_retries=5,
)
def test_initialize_expert_unsupported_provider(clean_env):
"""Test error handling for unsupported provider in expert mode."""
with pytest.raises(
ValueError, match=r"Missing required environment variable for provider: unknown"
):
initialize_expert_llm("unknown", "model")
def test_estimate_tokens():
"""Test token estimation functionality."""
# Test empty/None cases
assert CiaynAgent._estimate_tokens(None) == 0
assert CiaynAgent._estimate_tokens("") == 0
# Test string content
assert CiaynAgent._estimate_tokens("test") == 2 # 4 bytes
assert CiaynAgent._estimate_tokens("hello world") == 5 # 11 bytes
assert CiaynAgent._estimate_tokens("🚀") == 2 # 4 bytes
# Test message content
msg = HumanMessage(content="test message")
assert CiaynAgent._estimate_tokens(msg) == 6 # 11 bytes
def test_initialize_openai(clean_env, mock_openai):
"""Test OpenAI provider initialization"""
os.environ["OPENAI_API_KEY"] = "test-key"
_model = initialize_llm("openai", "gpt-4", temperature=0.7)
mock_openai.assert_called_once_with(
api_key="test-key", model="gpt-4", temperature=0.7, timeout=180, max_retries=5
)
def test_initialize_gemini(clean_env, mock_gemini):
"""Test Gemini provider initialization"""
os.environ["GEMINI_API_KEY"] = "test-key"
_model = initialize_llm(
"gemini", "gemini-2.0-flash-thinking-exp-1219", temperature=0.7
)
mock_gemini.assert_called_with(
api_key="test-key",
model="gemini-2.0-flash-thinking-exp-1219",
temperature=0.7,
timeout=180,
max_retries=5,
)
def test_initialize_anthropic(clean_env, mock_anthropic):
"""Test Anthropic provider initialization"""
os.environ["ANTHROPIC_API_KEY"] = "test-key"
_model = initialize_llm("anthropic", "claude-3", temperature=0.7)
mock_anthropic.assert_called_with(
api_key="test-key",
model_name="claude-3",
temperature=0.7,
timeout=180,
max_retries=5,
)
def test_initialize_openrouter(clean_env, mock_openai):
"""Test OpenRouter provider initialization"""
os.environ["OPENROUTER_API_KEY"] = "test-key"
_model = initialize_llm("openrouter", "mistral-large", temperature=0.7)
mock_openai.assert_called_with(
api_key="test-key",
base_url="https://openrouter.ai/api/v1",
model="mistral-large",
temperature=0.7,
timeout=180,
max_retries=5,
)
def test_initialize_openai_compatible(clean_env, mock_openai):
"""Test OpenAI-compatible provider initialization"""
os.environ["OPENAI_API_KEY"] = "test-key"
os.environ["OPENAI_API_BASE"] = "https://custom-endpoint/v1"
_model = initialize_llm("openai-compatible", "local-model", temperature=0.3)
mock_openai.assert_called_with(
api_key="test-key",
base_url="https://custom-endpoint/v1",
model="local-model",
temperature=0.3,
timeout=180,
max_retries=5,
)
def test_initialize_unsupported_provider(clean_env):
"""Test initialization with unsupported provider raises ValueError"""
with pytest.raises(ValueError, match=r"Missing required environment variable for provider: unknown"):
initialize_llm("unknown", "model")
def test_temperature_defaults(clean_env, mock_openai, mock_anthropic, mock_gemini):
"""Test default temperature behavior for different providers."""
os.environ["OPENAI_API_KEY"] = "test-key"
os.environ["ANTHROPIC_API_KEY"] = "test-key"
os.environ["OPENAI_API_BASE"] = "http://test-url"
os.environ["GEMINI_API_KEY"] = "test-key"
# Test openai-compatible default temperature
initialize_llm("openai-compatible", "test-model", temperature=0.3)
mock_openai.assert_called_with(
api_key="test-key",
base_url="http://test-url",
model="test-model",
temperature=0.3,
timeout=180,
max_retries=5,
)
# Test default temperature when none is provided for models that support it
initialize_llm("openai", "test-model")
mock_openai.assert_called_with(
api_key="test-key",
model="test-model",
temperature=0.7,
timeout=180,
max_retries=5,
)
initialize_llm("anthropic", "test-model")
mock_anthropic.assert_called_with(
api_key="test-key",
model_name="test-model",
temperature=0.7,
timeout=180,
max_retries=5,
)
initialize_llm("gemini", "test-model")
mock_gemini.assert_called_with(
api_key="test-key",
model="test-model",
temperature=0.7,
timeout=180,
max_retries=5,
)
# Test expert models don't require temperature
initialize_expert_llm("openai", "o1")
mock_openai.assert_called_with(
api_key="test-key",
model="o1",
reasoning_effort="high",
timeout=180,
max_retries=5,
)
initialize_expert_llm("openai", "o1-mini")
mock_openai.assert_called_with(
api_key="test-key",
model="o1-mini",
reasoning_effort="high",
timeout=180,
max_retries=5,
)
def test_explicit_temperature(clean_env, mock_openai, mock_anthropic, mock_gemini):
"""Test explicit temperature setting for each provider."""
os.environ["OPENAI_API_KEY"] = "test-key"
os.environ["ANTHROPIC_API_KEY"] = "test-key"
os.environ["OPENROUTER_API_KEY"] = "test-key"
os.environ["GEMINI_API_KEY"] = "test-key"
test_temp = 0.7
# Test OpenAI
initialize_llm("openai", "test-model", temperature=test_temp)
mock_openai.assert_called_with(
api_key="test-key",
model="test-model",
temperature=test_temp,
timeout=180,
max_retries=5,
)
# Test Gemini
initialize_llm("gemini", "test-model", temperature=test_temp)
mock_gemini.assert_called_with(
api_key="test-key",
model="test-model",
temperature=test_temp,
timeout=180,
max_retries=5,
)
# Test Anthropic
initialize_llm("anthropic", "test-model", temperature=test_temp)
mock_anthropic.assert_called_with(
api_key="test-key",
model_name="test-model",
temperature=test_temp,
timeout=180,
max_retries=5,
)
# Test OpenRouter
initialize_llm("openrouter", "test-model", temperature=test_temp)
mock_openai.assert_called_with(
api_key="test-key",
base_url="https://openrouter.ai/api/v1",
model="test-model",
temperature=test_temp,
timeout=180,
max_retries=5,
)
def test_get_available_openai_models_success():
"""Test successful retrieval of OpenAI models."""
mock_model = Mock()
mock_model.id = "gpt-4"
mock_models = Mock()
mock_models.data = [mock_model]
with mock.patch("ra_aid.llm.OpenAI") as mock_client:
mock_client.return_value.models.list.return_value = mock_models
models = get_available_openai_models()
assert models == ["gpt-4"]
mock_client.return_value.models.list.assert_called_once()
def test_get_available_openai_models_failure():
"""Test graceful handling of model retrieval failure."""
with mock.patch("ra_aid.llm.OpenAI") as mock_client:
mock_client.return_value.models.list.side_effect = Exception("API Error")
models = get_available_openai_models()
assert models == []
mock_client.return_value.models.list.assert_called_once()
def test_select_expert_model_explicit():
"""Test model selection with explicitly specified model."""
model = select_expert_model("openai", "gpt-4")
assert model == "gpt-4"
def test_select_expert_model_non_openai():
"""Test model selection for non-OpenAI provider."""
model = select_expert_model("anthropic", None)
assert model is None
def test_select_expert_model_priority():
"""Test model selection follows priority order."""
available_models = ["gpt-4", "o1", "o3-mini"]
with mock.patch(
"ra_aid.llm.get_available_openai_models", return_value=available_models
):
model = select_expert_model("openai")
assert model == "o3-mini"
def test_select_expert_model_no_match():
"""Test model selection when no priority models available."""
available_models = ["gpt-4", "gpt-3.5"]
with mock.patch(
"ra_aid.llm.get_available_openai_models", return_value=available_models
):
model = select_expert_model("openai")
assert model is None
def test_temperature_validation(clean_env, mock_openai):
"""Test temperature validation in command line arguments."""
from ra_aid.__main__ import parse_arguments
# Test temperature below minimum
with pytest.raises(SystemExit):
parse_arguments(["--message", "test", "--temperature", "-0.1"])
# Test temperature above maximum
with pytest.raises(SystemExit):
parse_arguments(["--message", "test", "--temperature", "2.1"])
# Test valid temperature
args = parse_arguments(["--message", "test", "--temperature", "0.7"])
assert args.temperature == 0.7
def test_provider_name_validation():
"""Test provider name validation and normalization."""
# Test all supported providers
providers = ["openai", "anthropic", "openrouter", "openai-compatible", "gemini"]
for provider in providers:
try:
with patch("ra_aid.llm.ChatOpenAI"), patch("ra_aid.llm.ChatAnthropic"):
initialize_llm(provider, "test-model", temperature=0.7)
except ValueError as e:
if "Temperature must be provided" not in str(e):
pytest.fail(
f"Valid provider {provider} raised unexpected ValueError: {e}"
)
def test_initialize_llm_cross_provider(
clean_env, mock_openai, mock_anthropic, mock_gemini, monkeypatch
):
"""Test initializing different providers in sequence."""
# Initialize OpenAI
monkeypatch.setenv("OPENAI_API_KEY", "openai-key")
_llm1 = initialize_llm("openai", "gpt-4", temperature=0.7)
mock_openai.assert_called_with(
api_key="openai-key", model="gpt-4", temperature=0.7, timeout=180, max_retries=5
)
# Initialize Anthropic
monkeypatch.setenv("ANTHROPIC_API_KEY", "anthropic-key")
_llm2 = initialize_llm("anthropic", "claude-3", temperature=0.7)
mock_anthropic.assert_called_with(
api_key="anthropic-key",
model_name="claude-3",
temperature=0.7,
timeout=180,
max_retries=5,
)
# Initialize Gemini
monkeypatch.setenv("GEMINI_API_KEY", "gemini-key")
_llm3 = initialize_llm("gemini", "gemini-pro", temperature=0.7)
mock_gemini.assert_called_with(
api_key="gemini-key",
model="gemini-pro",
temperature=0.7,
timeout=180,
max_retries=5,
)
@dataclass
class Args:
"""Test arguments class."""
provider: str
expert_provider: str
model: str = None
expert_model: str = None
def test_environment_variable_precedence(clean_env, mock_openai, monkeypatch):
"""Test environment variable precedence and fallback."""
# Test get_env_var helper with fallback
monkeypatch.setenv("TEST_KEY", "base-value")
monkeypatch.setenv("EXPERT_TEST_KEY", "expert-value")
assert get_env_var("TEST_KEY") == "base-value"
assert get_env_var("TEST_KEY", expert=True) == "expert-value"
# Test fallback when expert value not set
monkeypatch.delenv("EXPERT_TEST_KEY", raising=False)
assert get_env_var("TEST_KEY", expert=True) == "base-value"
# Test provider config
monkeypatch.setenv("EXPERT_OPENAI_API_KEY", "expert-key")
config = get_provider_config("openai", is_expert=True)
assert config["api_key"] == "expert-key"
# Test LLM client creation with expert mode
_llm = create_llm_client("openai", "o1", is_expert=True)
mock_openai.assert_called_with(
api_key="expert-key",
model="o1",
reasoning_effort="high",
timeout=180,
max_retries=5,
)
# Test environment validation
monkeypatch.setenv("EXPERT_OPENAI_API_KEY", "")
monkeypatch.delenv("OPENAI_API_KEY", raising=False)
monkeypatch.delenv("TAVILY_API_KEY", raising=False)
monkeypatch.setenv("ANTHROPIC_API_KEY", "anthropic-key")
monkeypatch.setenv("GEMINI_API_KEY", "gemini-key")
monkeypatch.setenv("ANTHROPIC_MODEL", "claude-3-haiku-20240307")
args = Args(provider="anthropic", expert_provider="openai")
expert_enabled, expert_missing, web_enabled, web_missing = validate_environment(
args
)
assert not expert_enabled
assert expert_missing
assert not web_enabled
assert web_missing
@pytest.fixture
def mock_anthropic():
"""
Mock ChatAnthropic class for testing Anthropic provider initialization.
Prevents actual API calls during testing.
"""
with patch("ra_aid.llm.ChatAnthropic") as mock:
mock.return_value = Mock(spec=ChatAnthropic)
yield mock
@pytest.fixture
def mock_gemini():
"""Mock ChatGoogleGenerativeAI class for testing Gemini provider initialization."""
with patch("ra_aid.llm.ChatGoogleGenerativeAI") as mock:
mock.return_value = Mock(spec=ChatGoogleGenerativeAI)
yield mock
@pytest.fixture
def mock_deepseek_reasoner():
"""Mock ChatDeepseekReasoner for testing DeepSeek provider initialization."""
with patch("ra_aid.llm.ChatDeepseekReasoner") as mock:
mock.return_value = Mock()
yield mock
def test_initialize_deepseek(
clean_env, mock_openai, mock_deepseek_reasoner, monkeypatch
):
"""Test DeepSeek provider initialization with different models."""
monkeypatch.setenv("DEEPSEEK_API_KEY", "test-key")
# Test with reasoner model
_model = initialize_llm("deepseek", "deepseek-reasoner", temperature=0.7)
mock_deepseek_reasoner.assert_called_with(
api_key="test-key",
base_url="https://api.deepseek.com",
model="deepseek-reasoner",
temperature=0.7,
timeout=180,
max_retries=5,
)
# Test with OpenAI-compatible model
_model = initialize_llm("deepseek", "deepseek-chat", temperature=0.7)
mock_openai.assert_called_with(
api_key="test-key",
base_url="https://api.deepseek.com", # Updated to match implementation
model="deepseek-chat",
temperature=0.7,
timeout=180,
max_retries=5,
)
def test_initialize_openrouter_deepseek(
clean_env, mock_openai, mock_deepseek_reasoner, monkeypatch
):
"""Test OpenRouter DeepSeek model initialization."""
monkeypatch.setenv("OPENROUTER_API_KEY", "test-key")
# Test with DeepSeek R1 model
_model = initialize_llm("openrouter", "deepseek/deepseek-r1", temperature=0.7)
mock_deepseek_reasoner.assert_called_with(
api_key="test-key",
base_url="https://openrouter.ai/api/v1",
model="deepseek/deepseek-r1",
temperature=0.7,
timeout=180,
max_retries=5,
)