import os import logging from typing import List from langchain_core.tools import tool from rich.console import Console from rich.markdown import Markdown from rich.panel import Panel logger = logging.getLogger(__name__) from ..database.repositories.key_fact_repository import get_key_fact_repository from ..database.repositories.key_snippet_repository import get_key_snippet_repository from ..database.repositories.related_files_repository import get_related_files_repository from ..database.repositories.research_note_repository import get_research_note_repository from ..database.repositories.config_repository import get_config_repository from ..llm import initialize_expert_llm from ..model_formatters import format_key_facts_dict from ..model_formatters.key_snippets_formatter import format_key_snippets_dict from ..model_formatters.research_notes_formatter import format_research_notes_dict console = Console() _model = None def get_model(): global _model try: if _model is None: config_repo = get_config_repository() provider = config_repo.get("expert_provider") or config_repo.get("provider") model = config_repo.get("expert_model") or config_repo.get("model") _model = initialize_expert_llm(provider, model) except Exception as e: _model = None console.print( Panel( f"Failed to initialize expert model: {e}", title="Error", border_style="red", ) ) raise return _model # Keep track of context globally expert_context = { "text": [], # Additional textual context "files": [], # File paths to include } @tool("emit_expert_context") def emit_expert_context(context: str) -> str: """Add context for the next expert question. This should be highly detailed contents such as entire sections of source code, etc. Do not include your question in the additional context. Err on the side of adding more context rather than less, but keep it information dense and under 500 words total. You must give the complete contents. Expert context will be reset after the ask_expert tool is called. Args: context: The context to add """ expert_context["text"].append(context) # Create and display status panel panel_content = f"Added expert context ({len(context)} characters)" console.print(Panel(panel_content, title="Expert Context", border_style="blue")) return "Context added." def read_files_with_limit(file_paths: List[str], max_lines: int = 10000) -> str: """Read multiple files and concatenate contents, stopping at line limit. Args: file_paths: List of file paths to read max_lines: Maximum total lines to read (default: 10000) Note: - Each file's contents will be prefaced with its path as a header - Stops reading files when max_lines limit is reached - Files that would exceed the line limit are truncated """ total_lines = 0 contents = [] for path in file_paths: try: if not os.path.exists(path): console.print(f"Warning: File not found: {path}", style="yellow") continue with open(path, "r", encoding="utf-8") as f: file_content = [] for i, line in enumerate(f): if total_lines + i >= max_lines: file_content.append( f"\n... truncated after {max_lines} lines ..." ) break file_content.append(line) if file_content: contents.append(f"\n## File: {path}\n") contents.append("".join(file_content)) total_lines += len(file_content) except Exception as e: console.print(f"Error reading file {path}: {str(e)}", style="red") continue return "".join(contents) def read_related_files(file_paths: List[str]) -> str: """Read the provided files and return their contents. Args: file_paths: List of file paths to read Returns: String containing concatenated file contents, or empty string if no paths """ if not file_paths: return "" return read_files_with_limit(file_paths, max_lines=10000) @tool("ask_expert") def ask_expert(question: str) -> str: """Ask a question to an expert AI model. Keep your questions specific, but long and detailed. You only query the expert when you have a specific question in mind. The expert can be extremely useful at logic questions, debugging, and reviewing complex source code, but you must provide all context including source manually. The expert can see any key facts and code snippets previously noted, along with any additional context you've provided. But the expert cannot see or reason about anything you have not explicitly provided in this way. Try to phrase your question in a way that it does not expand the scope of our top-level task. The expert can be prone to overthinking depending on what and how you ask it. """ global expert_context # Get all content first file_paths = list(get_related_files_repository().get_all().values()) related_contents = read_related_files(file_paths) # Get key snippets directly from repository and format using the formatter try: key_snippets = format_key_snippets_dict(get_key_snippet_repository().get_snippets_dict()) except RuntimeError as e: logger.error(f"Failed to access key snippet repository: {str(e)}") key_snippets = "" # Get key facts directly from repository and format using the formatter try: facts_dict = get_key_fact_repository().get_facts_dict() key_facts = format_key_facts_dict(facts_dict) except RuntimeError as e: logger.error(f"Failed to access key fact repository: {str(e)}") key_facts = "" # Get research notes directly from repository and format using the formatter try: repository = get_research_note_repository() notes_dict = repository.get_notes_dict() formatted_research_notes = format_research_notes_dict(notes_dict) except RuntimeError as e: logger.error(f"Failed to access research note repository: {str(e)}") formatted_research_notes = "" # Build display query (just question) display_query = "# Question\n" + question # Show only question in panel console.print( Panel(Markdown(display_query), title="🤔 Expert Query", border_style="yellow") ) # Clear context after panel display expert_context["text"].clear() expert_context["files"].clear() # Build full query in specified order query_parts = [] if related_contents: query_parts.extend(["# Related Files", related_contents]) if formatted_research_notes: query_parts.extend(["# Research Notes", formatted_research_notes]) if key_snippets and len(key_snippets) > 0: query_parts.extend(["# Key Snippets", key_snippets]) if key_facts and len(key_facts) > 0: query_parts.extend(["# Key Facts About This Project", key_facts]) if expert_context["text"]: query_parts.extend( ["\n# Additional Context", "\n".join(expert_context["text"])] ) query_parts.extend(["# Question", question]) query_parts.extend( [ "\n # Addidional Requirements", "**DO NOT OVERTHINK**", "**DO NOT OVERCOMPLICATE**", ] ) # Join all parts full_query = "\n".join(query_parts) # Get response using full query response = get_model().invoke(full_query) # Format and display response console.print( Panel(Markdown(response.content), title="Expert Response", border_style="blue") ) return response.content