"""
Research agent implementation.
This module provides functionality for running a research agent to investigate tasks
and queries. The agent can perform both general research and web-specific research
tasks, with options for expert guidance and human-in-the-loop collaboration.
"""
import inspect
import os
import uuid
from datetime import datetime
from typing import Any, Optional
from langchain_core.messages import SystemMessage
from rich.console import Console
from rich.markdown import Markdown
from rich.panel import Panel
from ra_aid.agent_context import agent_context, is_completed, reset_completion_flags, should_exit
# Import agent_utils functions at runtime to avoid circular imports
from ra_aid import agent_utils
from ra_aid.console.formatting import print_error
from ra_aid.database.repositories.key_fact_repository import get_key_fact_repository
from ra_aid.database.repositories.key_snippet_repository import get_key_snippet_repository
from ra_aid.database.repositories.human_input_repository import get_human_input_repository
from ra_aid.database.repositories.research_note_repository import get_research_note_repository
from ra_aid.database.repositories.config_repository import get_config_repository
from ra_aid.database.repositories.work_log_repository import get_work_log_repository
from ra_aid.env_inv_context import get_env_inv
from ra_aid.exceptions import AgentInterrupt
from ra_aid.llm import initialize_expert_llm
from ra_aid.logging_config import get_logger
from ra_aid.model_formatters import format_key_facts_dict
from ra_aid.model_formatters.key_snippets_formatter import format_key_snippets_dict
from ra_aid.model_formatters.research_notes_formatter import format_research_notes_dict
from ra_aid.models_params import models_params
from ra_aid.project_info import display_project_status, format_project_info, get_project_info
from ra_aid.prompts.expert_prompts import EXPERT_PROMPT_SECTION_RESEARCH
from ra_aid.prompts.human_prompts import HUMAN_PROMPT_SECTION_RESEARCH
from ra_aid.prompts.research_prompts import RESEARCH_ONLY_PROMPT, RESEARCH_PROMPT
from ra_aid.prompts.reasoning_assist_prompt import REASONING_ASSIST_PROMPT_RESEARCH
from ra_aid.prompts.web_research_prompts import (
WEB_RESEARCH_PROMPT,
WEB_RESEARCH_PROMPT_SECTION_RESEARCH,
)
from ra_aid.prompts.common_prompts import NEW_PROJECT_HINTS
from ra_aid.tool_configs import get_research_tools, get_web_research_tools
from ra_aid.tools.memory import get_related_files, log_work_event
logger = get_logger(__name__)
console = Console()
def run_research_agent(
base_task_or_query: str,
model,
*,
expert_enabled: bool = False,
research_only: bool = False,
hil: bool = False,
web_research_enabled: bool = False,
memory: Optional[Any] = None,
thread_id: Optional[str] = None,
console_message: Optional[str] = None,
) -> Optional[str]:
"""Run a research agent with the given configuration.
Args:
base_task_or_query: The main task or query for research
model: The LLM model to use
expert_enabled: Whether expert mode is enabled
research_only: Whether this is a research-only task
hil: Whether human-in-the-loop mode is enabled
web_research_enabled: Whether web research is enabled
memory: Optional memory instance to use
thread_id: Optional thread ID (defaults to new UUID)
console_message: Optional message to display before running
Returns:
Optional[str]: The completion message if task completed successfully
Example:
result = run_research_agent(
"Research Python async patterns",
model,
expert_enabled=True,
research_only=True
)
"""
thread_id = thread_id or str(uuid.uuid4())
logger.debug("Starting research agent with thread_id=%s", thread_id)
logger.debug(
"Research configuration: expert=%s, research_only=%s, hil=%s, web=%s",
expert_enabled,
research_only,
hil,
web_research_enabled,
)
if memory is None:
from langgraph.checkpoint.memory import MemorySaver
memory = MemorySaver()
current_date = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
working_directory = os.getcwd()
# Get the last human input, if it exists
base_task = base_task_or_query
try:
human_input_repository = get_human_input_repository()
recent_inputs = human_input_repository.get_recent(1)
if recent_inputs and len(recent_inputs) > 0:
last_human_input = recent_inputs[0].content
base_task = (
f"{last_human_input}\n{base_task}"
)
except RuntimeError as e:
logger.error(f"Failed to access human input repository: {str(e)}")
# Continue without appending last human input
try:
key_facts = format_key_facts_dict(get_key_fact_repository().get_facts_dict())
except RuntimeError as e:
logger.error(f"Failed to access key fact repository: {str(e)}")
key_facts = ""
key_snippets = format_key_snippets_dict(
get_key_snippet_repository().get_snippets_dict()
)
related_files = get_related_files()
try:
project_info = get_project_info(".", file_limit=2000)
formatted_project_info = format_project_info(project_info)
except Exception as e:
logger.warning(f"Failed to get project info: {e}")
formatted_project_info = ""
tools = get_research_tools(
research_only=research_only,
expert_enabled=expert_enabled,
human_interaction=hil,
web_research_enabled=get_config_repository().get("web_research_enabled", False),
)
# Get model info for reasoning assistance configuration
provider = get_config_repository().get("provider", "")
model_name = get_config_repository().get("model", "")
# Get model configuration to check for reasoning_assist_default
model_config = {}
provider_models = models_params.get(provider, {})
if provider_models and model_name in provider_models:
model_config = provider_models[model_name]
# Check if reasoning assist is explicitly enabled/disabled
force_assistance = get_config_repository().get("force_reasoning_assistance", False)
disable_assistance = get_config_repository().get(
"disable_reasoning_assistance", False
)
if force_assistance:
reasoning_assist_enabled = True
elif disable_assistance:
reasoning_assist_enabled = False
else:
# Fall back to model default
reasoning_assist_enabled = model_config.get("reasoning_assist_default", False)
logger.debug("Reasoning assist enabled: %s", reasoning_assist_enabled)
expert_guidance = ""
# Get research note information for reasoning assistance
try:
research_notes = format_research_notes_dict(
get_research_note_repository().get_notes_dict()
)
except Exception as e:
logger.warning(f"Failed to get research notes: {e}")
research_notes = ""
# If reasoning assist is enabled, make a one-off call to the expert model
if reasoning_assist_enabled:
try:
logger.info(
"Reasoning assist enabled for model %s, getting expert guidance",
model_name,
)
# Collect tool descriptions
tool_metadata = []
from ra_aid.tools.reflection import get_function_info as get_tool_info
for tool in tools:
try:
tool_info = get_tool_info(tool.func)
name = tool.func.__name__
description = inspect.getdoc(tool.func)
tool_metadata.append(f"Tool: {name}\nDescription: {description}\n")
except Exception as e:
logger.warning(f"Error getting tool info for {tool}: {e}")
# Format tool metadata
formatted_tool_metadata = "\n".join(tool_metadata)
# Initialize expert model
expert_model = initialize_expert_llm(provider, model_name)
# Format the reasoning assist prompt
reasoning_assist_prompt = REASONING_ASSIST_PROMPT_RESEARCH.format(
current_date=current_date,
working_directory=working_directory,
base_task=base_task,
key_facts=key_facts,
key_snippets=key_snippets,
research_notes=research_notes,
related_files=related_files,
env_inv=get_env_inv(),
tool_metadata=formatted_tool_metadata,
)
# Show the reasoning assist query in a panel
console.print(
Panel(
Markdown(
"Consulting with the reasoning model on the best research approach."
),
title="📝 Thinking about research strategy...",
border_style="yellow",
)
)
logger.debug("Invoking expert model for reasoning assist")
# Make the call to the expert model
response = expert_model.invoke(reasoning_assist_prompt)
# Check if the model supports think tags
supports_think_tag = model_config.get("supports_think_tag", False)
supports_thinking = model_config.get("supports_thinking", False)
# Get response content, handling if it's a list (for Claude thinking mode)
content = None
if hasattr(response, "content"):
content = response.content
else:
# Fallback if content attribute is missing
content = str(response)
# Process content based on its type
if isinstance(content, list):
# Handle structured thinking mode (e.g., Claude 3.7)
thinking_content = None
response_text = None
# Process each item in the list
for item in content:
if isinstance(item, dict):
# Extract thinking content
if item.get("type") == "thinking" and "thinking" in item:
thinking_content = item["thinking"]
logger.debug("Found structured thinking content")
# Extract response text
elif item.get("type") == "text" and "text" in item:
response_text = item["text"]
logger.debug("Found structured response text")
# Display thinking content in a separate panel if available
if thinking_content and get_config_repository().get(
"show_thoughts", False
):
logger.debug(
f"Displaying structured thinking content ({len(thinking_content)} chars)"
)
console.print(
Panel(
Markdown(thinking_content),
title="💭 Expert Thinking",
border_style="yellow",
)
)
# Use response_text if available, otherwise fall back to joining
if response_text:
content = response_text
else:
# Fallback: join list items if structured extraction failed
logger.debug(
"No structured response text found, joining list items"
)
content = "\n".join(str(item) for item in content)
elif supports_think_tag or supports_thinking:
# Process thinking content using the centralized function
content, _ = agent_utils.process_thinking_content(
content=content,
supports_think_tag=supports_think_tag,
supports_thinking=supports_thinking,
panel_title="💭 Expert Thinking",
panel_style="yellow",
logger=logger,
)
# Display the expert guidance in a panel
console.print(
Panel(
Markdown(content),
title="Research Strategy Guidance",
border_style="blue",
)
)
# Use the content as expert guidance
expert_guidance = (
content + "\n\nCONSULT WITH THE EXPERT FREQUENTLY DURING RESEARCH"
)
logger.info("Received expert guidance for research")
except Exception as e:
logger.error("Error getting expert guidance for research: %s", e)
expert_guidance = ""
agent = agent_utils.create_agent(model, tools, checkpointer=memory, agent_type="research")
expert_section = EXPERT_PROMPT_SECTION_RESEARCH if expert_enabled else ""
human_section = HUMAN_PROMPT_SECTION_RESEARCH if hil else ""
web_research_section = (
WEB_RESEARCH_PROMPT_SECTION_RESEARCH
if get_config_repository().get("web_research_enabled")
else ""
)
# Prepare expert guidance section if expert guidance is available
expert_guidance_section = ""
if expert_guidance:
expert_guidance_section = f"""
{expert_guidance}
"""
# Format research notes if available
# We get research notes earlier for reasoning assistance
# Get environment inventory information
prompt = (RESEARCH_ONLY_PROMPT if research_only else RESEARCH_PROMPT).format(
current_date=current_date,
working_directory=working_directory,
base_task=base_task,
research_only_note=(
""
if research_only
else " Only request implementation if the user explicitly asked for changes to be made."
),
expert_section=expert_section,
human_section=human_section,
web_research_section=web_research_section,
key_facts=key_facts,
work_log=get_work_log_repository().format_work_log(),
key_snippets=key_snippets,
related_files=related_files,
project_info=formatted_project_info,
new_project_hints=NEW_PROJECT_HINTS if project_info.is_new else "",
env_inv=get_env_inv(),
expert_guidance_section=expert_guidance_section,
)
config = get_config_repository().get_all()
recursion_limit = config.get("recursion_limit", 100)
run_config = {
"configurable": {"thread_id": thread_id},
"recursion_limit": recursion_limit,
}
run_config.update(config)
try:
if console_message:
console.print(
Panel(Markdown(console_message), title="🔬 Looking into it...")
)
if project_info:
display_project_status(project_info)
if agent is not None:
logger.debug("Research agent created successfully")
none_or_fallback_handler = agent_utils.init_fallback_handler(agent, tools)
_result = agent_utils.run_agent_with_retry(agent, prompt, none_or_fallback_handler)
if _result:
# Log research completion
log_work_event(f"Completed research phase for: {base_task_or_query}")
return _result
else:
logger.debug("No model provided, running web research tools directly")
return run_web_research_agent(
base_task_or_query,
model=None,
expert_enabled=expert_enabled,
hil=hil,
web_research_enabled=web_research_enabled,
memory=memory,
thread_id=thread_id,
console_message=console_message,
)
except (KeyboardInterrupt, AgentInterrupt):
raise
except Exception as e:
logger.error("Research agent failed: %s", str(e), exc_info=True)
raise
def run_web_research_agent(
query: str,
model,
*,
expert_enabled: bool = False,
hil: bool = False,
web_research_enabled: bool = False,
memory: Optional[Any] = None,
thread_id: Optional[str] = None,
console_message: Optional[str] = None,
) -> Optional[str]:
"""Run a web research agent with the given configuration.
Args:
query: The mainquery for web research
model: The LLM model to use
expert_enabled: Whether expert mode is enabled
hil: Whether human-in-the-loop mode is enabled
web_research_enabled: Whether web research is enabled
memory: Optional memory instance to use
thread_id: Optional thread ID (defaults to new UUID)
console_message: Optional message to display before running
Returns:
Optional[str]: The completion message if task completed successfully
Example:
result = run_web_research_agent(
"Research latest Python async patterns",
model,
expert_enabled=True
)
"""
thread_id = thread_id or str(uuid.uuid4())
logger.debug("Starting web research agent with thread_id=%s", thread_id)
logger.debug(
"Web research configuration: expert=%s, hil=%s, web=%s",
expert_enabled,
hil,
web_research_enabled,
)
if memory is None:
from langgraph.checkpoint.memory import MemorySaver
memory = MemorySaver()
if thread_id is None:
thread_id = str(uuid.uuid4())
tools = get_web_research_tools(expert_enabled=expert_enabled)
agent = agent_utils.create_agent(model, tools, checkpointer=memory, agent_type="research")
expert_section = EXPERT_PROMPT_SECTION_RESEARCH if expert_enabled else ""
human_section = HUMAN_PROMPT_SECTION_RESEARCH if hil else ""
try:
key_facts = format_key_facts_dict(get_key_fact_repository().get_facts_dict())
except RuntimeError as e:
logger.error(f"Failed to access key fact repository: {str(e)}")
key_facts = ""
try:
key_snippets = format_key_snippets_dict(
get_key_snippet_repository().get_snippets_dict()
)
except RuntimeError as e:
logger.error(f"Failed to access key snippet repository: {str(e)}")
key_snippets = ""
related_files = get_related_files()
current_date = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
working_directory = os.getcwd()
# Get environment inventory information
prompt = WEB_RESEARCH_PROMPT.format(
current_date=current_date,
working_directory=working_directory,
web_research_query=query,
expert_section=expert_section,
human_section=human_section,
key_facts=key_facts,
work_log=get_work_log_repository().format_work_log(),
key_snippets=key_snippets,
related_files=related_files,
env_inv=get_env_inv(),
)
config = get_config_repository().get_all()
recursion_limit = config.get("recursion_limit", 100)
run_config = {
"configurable": {"thread_id": thread_id},
"recursion_limit": recursion_limit,
}
if config:
run_config.update(config)
try:
if console_message:
console.print(Panel(Markdown(console_message), title="🔬 Researching..."))
logger.debug("Web research agent completed successfully")
none_or_fallback_handler = init_fallback_handler(agent, tools)
_result = run_agent_with_retry(agent, prompt, none_or_fallback_handler)
if _result:
# Log web research completion
log_work_event(f"Completed web research phase for: {query}")
return _result
except (KeyboardInterrupt, AgentInterrupt):
raise
except Exception as e:
logger.error("Web research agent failed: %s", str(e), exc_info=True)
raise