fix expert context
This commit is contained in:
parent
c69a249dea
commit
b9d49060f3
|
|
@ -1,11 +0,0 @@
|
|||
# Technical Debt Note 1
|
||||
## Description
|
||||
The tech debt note cleanup process needs an AI-driven strategy to:
|
||||
1. Analyze note contents and determine priority/relevance
|
||||
2. Consider note age and related code locations
|
||||
3. Implement a scoring system for note importance
|
||||
|
||||
This should be implemented as a separate cleanup agent that can be triggered when needed.
|
||||
|
||||
## Location
|
||||
ra_aid/tools/note_tech_debt.py
|
||||
|
|
@ -123,11 +123,6 @@ def ask_expert(question: str) -> str:
|
|||
# Build query with context and key facts
|
||||
query_parts = []
|
||||
|
||||
# Add related file contents if any exist first
|
||||
related_contents = read_related_files()
|
||||
if related_contents:
|
||||
query_parts.extend(['# Related Files', related_contents])
|
||||
|
||||
# Add key facts if they exist
|
||||
key_facts = get_memory_value('key_facts')
|
||||
if key_facts and len(key_facts) > 0:
|
||||
|
|
@ -145,7 +140,7 @@ def ask_expert(question: str) -> str:
|
|||
query_parts.append("\n# Additional Context")
|
||||
query_parts.append("\n".join(expert_context))
|
||||
|
||||
# Add the question last
|
||||
# Add the question
|
||||
if query_parts: # If we have context/facts, add a newline before question
|
||||
query_parts.append("\n# Question")
|
||||
query_parts.append(question)
|
||||
|
|
@ -163,6 +158,15 @@ def ask_expert(question: str) -> str:
|
|||
# Clear context after use (only after successful panel display)
|
||||
expert_context.clear()
|
||||
|
||||
# Get related file contents and rebuild query with it at the start
|
||||
related_contents = read_related_files()
|
||||
if related_contents:
|
||||
# Create new query_parts with related files at the start
|
||||
new_query_parts = ['# Related Files', related_contents]
|
||||
new_query_parts.extend(query_parts)
|
||||
query_parts = new_query_parts
|
||||
query = "\n".join(query_parts)
|
||||
|
||||
# Get response
|
||||
response = model.invoke(query)
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue