feat(fallback): implement fallback handler for tool execution errors to enhance error resilience and user experience
refactor(fallback): streamline fallback model selection and invocation process for improved maintainability fix(config): reduce maximum tool failures from 3 to 2 to tighten error handling thresholds style(console): improve error message formatting and logging for better clarity and debugging chore(main): remove redundant fallback tool model handling from main function to simplify configuration management
This commit is contained in:
parent
1388067769
commit
67ecf72a6c
|
|
@ -427,15 +427,6 @@ def main():
|
|||
_global_memory["config"]["planner_model"] = args.planner_model or args.model
|
||||
|
||||
_global_memory["config"]["no_fallback_tool"] = args.no_fallback_tool
|
||||
_global_memory["config"]["fallback_tool_models"] = (
|
||||
[
|
||||
model.strip()
|
||||
for model in args.fallback_tool_models.split(",")
|
||||
if model.strip()
|
||||
]
|
||||
if args.fallback_tool_models
|
||||
else []
|
||||
)
|
||||
|
||||
# Store research config with fallback to base values
|
||||
_global_memory["config"]["research_provider"] = (
|
||||
|
|
@ -445,15 +436,6 @@ def main():
|
|||
|
||||
# Store fallback tool configuration
|
||||
_global_memory["config"]["no_fallback_tool"] = args.no_fallback_tool
|
||||
_global_memory["config"]["fallback_tool_models"] = (
|
||||
[
|
||||
model.strip()
|
||||
for model in args.fallback_tool_models.split(",")
|
||||
if model.strip()
|
||||
]
|
||||
if args.fallback_tool_models
|
||||
else []
|
||||
)
|
||||
|
||||
# Run research stage
|
||||
print_stage_header("Research Stage")
|
||||
|
|
|
|||
|
|
@ -16,7 +16,6 @@ from langchain_core.language_models import BaseChatModel
|
|||
from langchain_core.messages import (
|
||||
BaseMessage,
|
||||
HumanMessage,
|
||||
InvalidToolCall,
|
||||
trim_messages,
|
||||
)
|
||||
from langchain_core.tools import tool
|
||||
|
|
@ -339,9 +338,6 @@ def run_research_agent(
|
|||
if memory is None:
|
||||
memory = MemorySaver()
|
||||
|
||||
if thread_id is None:
|
||||
thread_id = str(uuid.uuid4())
|
||||
|
||||
tools = get_research_tools(
|
||||
research_only=research_only,
|
||||
expert_enabled=expert_enabled,
|
||||
|
|
@ -413,7 +409,8 @@ def run_research_agent(
|
|||
|
||||
if agent is not None:
|
||||
logger.debug("Research agent completed successfully")
|
||||
_result = run_agent_with_retry(agent, prompt, run_config)
|
||||
fallback_handler = FallbackHandler(config, tools)
|
||||
_result = run_agent_with_retry(agent, prompt, run_config, fallback_handler)
|
||||
if _result:
|
||||
# Log research completion
|
||||
log_work_event(f"Completed research phase for: {base_task_or_query}")
|
||||
|
|
@ -529,7 +526,8 @@ def run_web_research_agent(
|
|||
console.print(Panel(Markdown(console_message), title="🔬 Researching..."))
|
||||
|
||||
logger.debug("Web research agent completed successfully")
|
||||
_result = run_agent_with_retry(agent, prompt, run_config)
|
||||
fallback_handler = FallbackHandler(config, tools)
|
||||
_result = run_agent_with_retry(agent, prompt, run_config, fallback_handler)
|
||||
if _result:
|
||||
# Log web research completion
|
||||
log_work_event(f"Completed web research phase for: {query}")
|
||||
|
|
@ -634,7 +632,10 @@ def run_planning_agent(
|
|||
try:
|
||||
print_stage_header("Planning Stage")
|
||||
logger.debug("Planning agent completed successfully")
|
||||
_result = run_agent_with_retry(agent, planning_prompt, run_config)
|
||||
fallback_handler = FallbackHandler(config, tools)
|
||||
_result = run_agent_with_retry(
|
||||
agent, planning_prompt, run_config, fallback_handler
|
||||
)
|
||||
if _result:
|
||||
# Log planning completion
|
||||
log_work_event(f"Completed planning phase for: {base_task}")
|
||||
|
|
@ -739,7 +740,8 @@ def run_task_implementation_agent(
|
|||
|
||||
try:
|
||||
logger.debug("Implementation agent completed successfully")
|
||||
_result = run_agent_with_retry(agent, prompt, run_config)
|
||||
fallback_handler = FallbackHandler(config, tools)
|
||||
_result = run_agent_with_retry(agent, prompt, run_config, fallback_handler)
|
||||
if _result:
|
||||
# Log task implementation completion
|
||||
log_work_event(f"Completed implementation of task: {task}")
|
||||
|
|
@ -805,7 +807,7 @@ def _decrement_agent_depth():
|
|||
_global_memory["agent_depth"] = _global_memory.get("agent_depth", 1) - 1
|
||||
|
||||
|
||||
def _run_agent_stream(agent, prompt, config):
|
||||
def _run_agent_stream(agent: CompiledGraph, prompt: str, config: dict):
|
||||
for chunk in agent.stream({"messages": [HumanMessage(content=prompt)]}, config):
|
||||
logger.debug("Agent output: %s", chunk)
|
||||
check_interrupt()
|
||||
|
|
@ -840,7 +842,9 @@ def _handle_api_error(e, attempt, max_retries, base_delay):
|
|||
time.sleep(0.1)
|
||||
|
||||
|
||||
def run_agent_with_retry(agent, prompt: str, config: dict) -> Optional[str]:
|
||||
def run_agent_with_retry(
|
||||
agent, prompt: str, config: dict, fallback_handler: FallbackHandler
|
||||
) -> Optional[str]:
|
||||
"""Run an agent with retry logic for API errors."""
|
||||
logger.debug("Running agent with prompt length: %d", len(prompt))
|
||||
original_handler = _setup_interrupt_handling()
|
||||
|
|
@ -850,7 +854,6 @@ def run_agent_with_retry(agent, prompt: str, config: dict) -> Optional[str]:
|
|||
_max_test_retries = config.get("max_test_cmd_retries", DEFAULT_MAX_TEST_CMD_RETRIES)
|
||||
auto_test = config.get("auto_test", False)
|
||||
original_prompt = prompt
|
||||
fallback_handler = FallbackHandler(config)
|
||||
|
||||
with InterruptibleSection():
|
||||
try:
|
||||
|
|
@ -872,8 +875,13 @@ def run_agent_with_retry(agent, prompt: str, config: dict) -> Optional[str]:
|
|||
continue
|
||||
logger.debug("Agent run completed successfully")
|
||||
return "Agent run completed successfully"
|
||||
except (ToolExecutionError, InvalidToolCall) as e:
|
||||
_handle_tool_execution_error(fallback_handler, agent, e)
|
||||
except ToolExecutionError as e:
|
||||
fallback_response = _handle_tool_execution_error(
|
||||
fallback_handler, agent, e
|
||||
)
|
||||
if fallback_response:
|
||||
prompt = original_prompt + "\n" + fallback_response
|
||||
continue
|
||||
except (KeyboardInterrupt, AgentInterrupt):
|
||||
raise
|
||||
except (
|
||||
|
|
@ -892,6 +900,37 @@ def run_agent_with_retry(agent, prompt: str, config: dict) -> Optional[str]:
|
|||
def _handle_tool_execution_error(
|
||||
fallback_handler: FallbackHandler,
|
||||
agent: CiaynAgent | CompiledGraph,
|
||||
error: ToolExecutionError | InvalidToolCall,
|
||||
error: ToolExecutionError,
|
||||
):
|
||||
fallback_handler.handle_failure("Tool execution error", error, agent)
|
||||
logger.debug("Entering _handle_tool_execution_error with error: %s", error)
|
||||
if error.tool_name:
|
||||
failed_tool_call_name = error.tool_name
|
||||
logger.debug(
|
||||
"Extracted failed_tool_call_name from error.tool_name: %s",
|
||||
failed_tool_call_name,
|
||||
)
|
||||
else:
|
||||
import re
|
||||
|
||||
msg = str(error)
|
||||
logger.debug("Error message: %s", msg)
|
||||
match = re.search(r"name=['\"](\w+)['\"]", msg)
|
||||
if match:
|
||||
failed_tool_call_name = match.group(1)
|
||||
logger.debug(
|
||||
"Extracted failed_tool_call_name using regex: %s", failed_tool_call_name
|
||||
)
|
||||
else:
|
||||
failed_tool_call_name = "Tool execution error"
|
||||
logger.debug(
|
||||
"Defaulting failed_tool_call_name to: %s", failed_tool_call_name
|
||||
)
|
||||
logger.debug(
|
||||
"Calling fallback_handler.handle_failure with failed_tool_call_name: %s",
|
||||
failed_tool_call_name,
|
||||
)
|
||||
fallback_response = fallback_handler.handle_failure(
|
||||
failed_tool_call_name, error, agent
|
||||
)
|
||||
logger.debug("Fallback response received: %s", fallback_response)
|
||||
return fallback_response
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
DEFAULT_RECURSION_LIMIT = 100
|
||||
DEFAULT_MAX_TEST_CMD_RETRIES = 3
|
||||
DEFAULT_MAX_TOOL_FAILURES = 3
|
||||
DEFAULT_MAX_TOOL_FAILURES = 2
|
||||
FALLBACK_TOOL_MODEL_LIMIT = 5
|
||||
RETRY_FALLBACK_COUNT = 3
|
||||
RETRY_FALLBACK_DELAY = 2
|
||||
|
|
|
|||
|
|
@ -1,9 +1,11 @@
|
|||
from typing import Any, Dict
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from langchain_core.messages import AIMessage
|
||||
from rich.markdown import Markdown
|
||||
from rich.panel import Panel
|
||||
|
||||
from ra_aid.exceptions import ToolExecutionError
|
||||
|
||||
# Import shared console instance
|
||||
from .formatting import console
|
||||
|
||||
|
|
@ -33,10 +35,26 @@ def print_agent_output(chunk: Dict[str, Any]) -> None:
|
|||
elif "tools" in chunk and "messages" in chunk["tools"]:
|
||||
for msg in chunk["tools"]["messages"]:
|
||||
if msg.status == "error" and msg.content:
|
||||
err_msg = msg.content.strip()
|
||||
console.print(
|
||||
Panel(
|
||||
Markdown(msg.content.strip()),
|
||||
Markdown(err_msg),
|
||||
title="❌ Tool Error",
|
||||
border_style="red bold",
|
||||
)
|
||||
)
|
||||
tool_name = getattr(msg, "name", None)
|
||||
raise ToolExecutionError(err_msg, tool_name=tool_name)
|
||||
|
||||
|
||||
def cpm(message: str, title: Optional[str] = None, border_style: str = "blue") -> None:
|
||||
"""
|
||||
Print a message using a Panel with Markdown formatting.
|
||||
|
||||
Args:
|
||||
message (str): The message content to display.
|
||||
title (Optional[str]): An optional title for the panel.
|
||||
border_style (str): Border style for the panel.
|
||||
"""
|
||||
|
||||
console.print(Panel(Markdown(message), title=title, border_style=border_style))
|
||||
|
|
|
|||
|
|
@ -17,5 +17,6 @@ class ToolExecutionError(Exception):
|
|||
This exception is used to distinguish tool execution failures
|
||||
from other types of errors in the agent system.
|
||||
"""
|
||||
|
||||
pass
|
||||
def __init__(self, message, tool_name=None):
|
||||
super().__init__(message)
|
||||
self.tool_name = tool_name
|
||||
|
|
|
|||
|
|
@ -1,13 +1,24 @@
|
|||
from typing import Dict
|
||||
from langchain_core.tools import BaseTool
|
||||
from langgraph.graph.graph import CompiledGraph
|
||||
from langgraph.graph.message import BaseMessage
|
||||
|
||||
from ra_aid.console.output import cpm
|
||||
import json
|
||||
|
||||
from ra_aid.agents.ciayn_agent import CiaynAgent
|
||||
from ra_aid.config import (
|
||||
DEFAULT_MAX_TOOL_FAILURES,
|
||||
FALLBACK_TOOL_MODEL_LIMIT,
|
||||
RETRY_FALLBACK_COUNT,
|
||||
)
|
||||
from ra_aid.logging_config import get_logger
|
||||
from ra_aid.tool_leaderboard import supported_top_tool_models
|
||||
from rich.console import Console
|
||||
from rich.markdown import Markdown
|
||||
from rich.panel import Panel
|
||||
from ra_aid.llm import initialize_llm, merge_chat_history, validate_provider_env
|
||||
from ra_aid.llm import initialize_llm, validate_provider_env
|
||||
|
||||
# from langgraph.graph.message import BaseMessage, BaseMessageChunk
|
||||
# from langgraph.prebuilt import ToolNode
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
|
@ -22,18 +33,21 @@ class FallbackHandler:
|
|||
counters when a tool call succeeds.
|
||||
"""
|
||||
|
||||
def __init__(self, config):
|
||||
def __init__(self, config, tools):
|
||||
"""
|
||||
Initialize the FallbackHandler with the given configuration.
|
||||
Initialize the FallbackHandler with the given configuration and tools.
|
||||
|
||||
Args:
|
||||
config (dict): Configuration dictionary that may include fallback settings.
|
||||
tools (list): List of available tools.
|
||||
"""
|
||||
self.config = config
|
||||
self.tools: list[BaseTool] = tools
|
||||
self.fallback_enabled = config.get("fallback_tool_enabled", True)
|
||||
self.fallback_tool_models = self._load_fallback_tool_models(config)
|
||||
self.tool_failure_consecutive_failures = 0
|
||||
self.tool_failure_used_fallbacks = set()
|
||||
self.console = Console()
|
||||
|
||||
def _load_fallback_tool_models(self, config):
|
||||
"""
|
||||
|
|
@ -49,46 +63,37 @@ class FallbackHandler:
|
|||
Returns:
|
||||
list of dict: Each dictionary contains keys 'model' and 'type' representing a fallback model.
|
||||
"""
|
||||
fallback_tool_models_config = config.get("fallback_tool_models")
|
||||
if fallback_tool_models_config:
|
||||
# Assume comma-separated model names; wrap each in a dict with default type "prompt"
|
||||
models = []
|
||||
for m in [
|
||||
x.strip() for x in fallback_tool_models_config.split(",") if x.strip()
|
||||
]:
|
||||
models.append({"model": m, "type": "prompt"})
|
||||
return models
|
||||
else:
|
||||
console = Console()
|
||||
supported = []
|
||||
skipped = []
|
||||
for item in supported_top_tool_models:
|
||||
provider = item.get("provider")
|
||||
model_name = item.get("model")
|
||||
if validate_provider_env(provider):
|
||||
supported.append(item)
|
||||
if len(supported) == FALLBACK_TOOL_MODEL_LIMIT:
|
||||
break
|
||||
else:
|
||||
skipped.append(model_name)
|
||||
final_models = []
|
||||
for item in supported:
|
||||
if "type" not in item:
|
||||
item["type"] = "prompt"
|
||||
item["model"] = item["model"].lower()
|
||||
final_models.append(item)
|
||||
message = "Fallback models selected: " + ", ".join(
|
||||
[m["model"] for m in final_models]
|
||||
supported = []
|
||||
skipped = []
|
||||
for item in supported_top_tool_models:
|
||||
provider = item.get("provider")
|
||||
model_name = item.get("model")
|
||||
if validate_provider_env(provider):
|
||||
supported.append(item)
|
||||
if len(supported) == FALLBACK_TOOL_MODEL_LIMIT:
|
||||
break
|
||||
else:
|
||||
skipped.append(model_name)
|
||||
final_models = []
|
||||
for item in supported:
|
||||
if "type" not in item:
|
||||
item["type"] = "prompt"
|
||||
item["model"] = item["model"].lower()
|
||||
final_models.append(item)
|
||||
message = "Fallback models selected: " + ", ".join(
|
||||
[m["model"] for m in final_models]
|
||||
)
|
||||
if skipped:
|
||||
message += (
|
||||
"\nSkipped top tool calling models due to missing provider ENV API keys: "
|
||||
+ ", ".join(skipped)
|
||||
)
|
||||
if skipped:
|
||||
message += (
|
||||
"\nSkipped top tool calling models due to missing provider ENV API keys: "
|
||||
+ ", ".join(skipped)
|
||||
)
|
||||
console.print(Panel(Markdown(message), title="Fallback Models"))
|
||||
return final_models
|
||||
cpm(message, title="Fallback Models")
|
||||
return final_models
|
||||
|
||||
def handle_failure(self, code: str, error: Exception, agent):
|
||||
def handle_failure(
|
||||
self, code: str, error: Exception, agent: CiaynAgent | CompiledGraph
|
||||
):
|
||||
"""
|
||||
Handle a tool failure by incrementing the failure counter and triggering fallback if thresholds are exceeded.
|
||||
|
||||
|
|
@ -114,7 +119,7 @@ class FallbackHandler:
|
|||
logger.debug(
|
||||
"_handle_tool_failure: threshold reached, invoking fallback mechanism."
|
||||
)
|
||||
self.attempt_fallback(code, logger, agent)
|
||||
return self.attempt_fallback(code, logger, agent)
|
||||
|
||||
def attempt_fallback(self, code: str, logger, agent):
|
||||
"""
|
||||
|
|
@ -127,17 +132,13 @@ class FallbackHandler:
|
|||
"""
|
||||
logger.debug(f"_attempt_fallback: initiating fallback for code: {code}")
|
||||
fallback_model = self.fallback_tool_models[0]
|
||||
failed_tool_call_name = code.split("(")[0].strip()
|
||||
failed_tool_call_name = code
|
||||
logger.error(
|
||||
f"Tool call failed {self.tool_failure_consecutive_failures} times. Attempting fallback to model: {fallback_model['model']} for tool: {failed_tool_call_name}"
|
||||
)
|
||||
Console().print(
|
||||
Panel(
|
||||
Markdown(
|
||||
f"**Tool fallback activated**: Switching to fallback model {fallback_model['model']} for tool {failed_tool_call_name}."
|
||||
),
|
||||
title="Fallback Notification",
|
||||
)
|
||||
cpm(
|
||||
f"**Tool fallback activated**: Switching to fallback model {fallback_model['model']} for tool {failed_tool_call_name}.",
|
||||
title="Fallback Notification",
|
||||
)
|
||||
if fallback_model.get("type", "prompt").lower() == "fc":
|
||||
self.attempt_fallback_function(code, logger, agent)
|
||||
|
|
@ -151,6 +152,30 @@ class FallbackHandler:
|
|||
self.tool_failure_consecutive_failures = 0
|
||||
self.tool_failure_used_fallbacks.clear()
|
||||
|
||||
def _find_tool_to_bind(self, agent, failed_tool_call_name):
|
||||
logger.debug(f"failed_tool_call_name={failed_tool_call_name}")
|
||||
tool_to_bind = None
|
||||
if hasattr(agent, "tools"):
|
||||
tool_to_bind = next(
|
||||
(t for t in agent.tools if t.func.__name__ == failed_tool_call_name),
|
||||
None,
|
||||
)
|
||||
if tool_to_bind is None:
|
||||
from ra_aid.tool_configs import get_all_tools
|
||||
|
||||
all_tools = get_all_tools()
|
||||
tool_to_bind = next(
|
||||
(t for t in all_tools if t.func.__name__ == failed_tool_call_name),
|
||||
None,
|
||||
)
|
||||
if tool_to_bind is None:
|
||||
available = [t.func.__name__ for t in get_all_tools()]
|
||||
logger.debug(
|
||||
f"Failed to find tool: {failed_tool_call_name}. Available tools: {available}"
|
||||
)
|
||||
raise Exception(f"Tool {failed_tool_call_name} not found in all tools.")
|
||||
return tool_to_bind
|
||||
|
||||
def attempt_fallback_prompt(self, code: str, logger, agent):
|
||||
"""
|
||||
Attempt a prompt-based fallback by iterating over fallback models and invoking the provided code.
|
||||
|
|
@ -169,43 +194,41 @@ class FallbackHandler:
|
|||
Exception: If all prompt-based fallback models fail.
|
||||
"""
|
||||
logger.debug("Attempting prompt-based fallback using fallback models")
|
||||
failed_tool_call_name = code.split("(")[0].strip()
|
||||
failed_tool_call_name = code
|
||||
for fallback_model in self.fallback_tool_models:
|
||||
try:
|
||||
logger.debug(f"Trying fallback model: {fallback_model['model']}")
|
||||
simple_model = initialize_llm(
|
||||
fallback_model["provider"], fallback_model["model"]
|
||||
)
|
||||
tool_to_bind = next(
|
||||
(
|
||||
t
|
||||
for t in agent.tools
|
||||
if t.func.__name__ == failed_tool_call_name
|
||||
),
|
||||
None,
|
||||
)
|
||||
if tool_to_bind is None:
|
||||
logger.debug(
|
||||
f"Failed to find tool: {failed_tool_call_name}. Available tools: {[t.func.__name__ for t in agent.tools]}"
|
||||
)
|
||||
raise Exception(
|
||||
f"Tool {failed_tool_call_name} not found in agent.tools"
|
||||
)
|
||||
tool_to_bind = self._find_tool_to_bind(agent, failed_tool_call_name)
|
||||
binded_model = simple_model.bind_tools(
|
||||
[tool_to_bind], tool_choice=failed_tool_call_name
|
||||
)
|
||||
retry_model = binded_model.with_retry(
|
||||
stop_after_attempt=RETRY_FALLBACK_COUNT
|
||||
)
|
||||
response = retry_model.invoke(code)
|
||||
# retry_model = binded_model.with_retry(
|
||||
# stop_after_attempt=RETRY_FALLBACK_COUNT
|
||||
# )
|
||||
response = binded_model.invoke(code)
|
||||
cpm(f"response={response}")
|
||||
|
||||
self.tool_failure_used_fallbacks.add(fallback_model["model"])
|
||||
agent.model = retry_model
|
||||
self.reset_fallback_handler()
|
||||
logger.debug(
|
||||
"Prompt-based fallback executed successfully with model: "
|
||||
+ fallback_model["model"]
|
||||
)
|
||||
return response
|
||||
|
||||
tool_call = self.base_message_to_tool_call_dict(response)
|
||||
if tool_call:
|
||||
result = self.invoke_prompt_tool_call(tool_call)
|
||||
cpm(f"result={result}")
|
||||
logger.debug(
|
||||
"Prompt-based fallback executed successfully with model: "
|
||||
+ fallback_model["model"]
|
||||
)
|
||||
self.reset_fallback_handler()
|
||||
return result
|
||||
else:
|
||||
cpm(
|
||||
response.content if hasattr(response, "content") else response,
|
||||
title="Fallback Model Response: " + fallback_model["model"],
|
||||
)
|
||||
return response
|
||||
except Exception as e:
|
||||
if isinstance(e, KeyboardInterrupt):
|
||||
raise
|
||||
|
|
@ -232,28 +255,14 @@ class FallbackHandler:
|
|||
Exception: If all function-calling fallback models fail.
|
||||
"""
|
||||
logger.debug("Attempting function-calling fallback using fallback models")
|
||||
failed_tool_call_name = code.split("(")[0].strip()
|
||||
failed_tool_call_name = code
|
||||
for fallback_model in self.fallback_tool_models:
|
||||
try:
|
||||
logger.debug(f"Trying fallback model: {fallback_model['model']}")
|
||||
simple_model = initialize_llm(
|
||||
fallback_model["provider"], fallback_model["model"]
|
||||
)
|
||||
tool_to_bind = next(
|
||||
(
|
||||
t
|
||||
for t in agent.tools
|
||||
if t.func.__name__ == failed_tool_call_name
|
||||
),
|
||||
None,
|
||||
)
|
||||
if tool_to_bind is None:
|
||||
logger.debug(
|
||||
f"Failed to find tool: {failed_tool_call_name}. Available tools: {[t.func.__name__ for t in agent.tools]}"
|
||||
)
|
||||
raise Exception(
|
||||
f"Tool {failed_tool_call_name} not found in agent.tools"
|
||||
)
|
||||
tool_to_bind = self._find_tool_to_bind(agent, failed_tool_call_name)
|
||||
binded_model = simple_model.bind_tools(
|
||||
[tool_to_bind], tool_choice=failed_tool_call_name
|
||||
)
|
||||
|
|
@ -261,13 +270,18 @@ class FallbackHandler:
|
|||
stop_after_attempt=RETRY_FALLBACK_COUNT
|
||||
)
|
||||
response = retry_model.invoke(code)
|
||||
cpm(f"response={response}")
|
||||
self.tool_failure_used_fallbacks.add(fallback_model["model"])
|
||||
agent.model = retry_model
|
||||
self.reset_fallback_handler()
|
||||
logger.debug(
|
||||
"Function-calling fallback executed successfully with model: "
|
||||
+ fallback_model["model"]
|
||||
)
|
||||
|
||||
cpm(
|
||||
response.content if hasattr(response, "content") else response,
|
||||
title="Fallback Model Response: " + fallback_model["model"],
|
||||
)
|
||||
return response
|
||||
except Exception as e:
|
||||
if isinstance(e, KeyboardInterrupt):
|
||||
|
|
@ -276,3 +290,58 @@ class FallbackHandler:
|
|||
f"Function-calling fallback with model {fallback_model['model']} failed: {e}"
|
||||
)
|
||||
raise Exception("All function-calling fallback models failed")
|
||||
|
||||
def invoke_prompt_tool_call(self, tool_call_request: dict):
|
||||
"""
|
||||
Invoke a tool call from a prompt-based fallback response.
|
||||
|
||||
Args:
|
||||
tool_call_request (dict): The tool call request containing keys 'type', 'name', and 'arguments'.
|
||||
|
||||
Returns:
|
||||
The result of invoking the tool.
|
||||
"""
|
||||
tool_name_to_tool = {tool.func.__name__: tool for tool in self.tools}
|
||||
name = tool_call_request["name"]
|
||||
arguments = tool_call_request["arguments"]
|
||||
# return tool_name_to_tool[name].invoke(arguments)
|
||||
# tool_call_dict = {"arguments": arguments}
|
||||
return tool_name_to_tool[name].invoke(arguments)
|
||||
|
||||
def base_message_to_tool_call_dict(self, response: BaseMessage):
|
||||
"""
|
||||
Extracts a tool call dictionary from a fallback response.
|
||||
|
||||
Args:
|
||||
response: The response object containing tool call data.
|
||||
|
||||
Returns:
|
||||
A tool call dictionary with keys 'id', 'type', 'name', and 'arguments' if a tool call is found,
|
||||
otherwise None.
|
||||
"""
|
||||
tool_calls = None
|
||||
if hasattr(response, "additional_kwargs") and response.additional_kwargs.get(
|
||||
"tool_calls"
|
||||
):
|
||||
tool_calls = response.additional_kwargs.get("tool_calls")
|
||||
elif hasattr(response, "tool_calls"):
|
||||
tool_calls = response.tool_calls
|
||||
elif isinstance(response, dict) and response.get("additional_kwargs", {}).get(
|
||||
"tool_calls"
|
||||
):
|
||||
tool_calls = response.get("additional_kwargs").get("tool_calls")
|
||||
if tool_calls:
|
||||
if len(tool_calls) > 1:
|
||||
logger.warning("Multiple tool calls detected, using the first one")
|
||||
tool_call = tool_calls[0]
|
||||
return {
|
||||
"id": tool_call["id"],
|
||||
"type": tool_call["type"],
|
||||
"name": tool_call["function"]["name"],
|
||||
"arguments": (
|
||||
json.loads(tool_call["function"]["arguments"])
|
||||
if isinstance(tool_call["function"]["arguments"], str)
|
||||
else tool_call["function"]["arguments"]
|
||||
),
|
||||
}
|
||||
return None
|
||||
|
|
|
|||
|
|
@ -28,7 +28,7 @@ from ra_aid.tools.write_file import write_file_tool
|
|||
# Read-only tools that don't modify system state
|
||||
def get_read_only_tools(
|
||||
human_interaction: bool = False, web_research_enabled: bool = False
|
||||
) -> list:
|
||||
):
|
||||
"""Get the list of read-only tools, optionally including human interaction tools.
|
||||
|
||||
Args:
|
||||
|
|
@ -61,6 +61,21 @@ def get_read_only_tools(
|
|||
|
||||
return tools
|
||||
|
||||
def get_all_tools_simple():
|
||||
"""Return a list containing all available tools using existing group methods."""
|
||||
return get_all_tools()
|
||||
|
||||
def get_all_tools():
|
||||
"""Return a list containing all available tools from different groups."""
|
||||
all_tools = []
|
||||
all_tools.extend(get_read_only_tools())
|
||||
all_tools.extend(MODIFICATION_TOOLS)
|
||||
all_tools.extend(EXPERT_TOOLS)
|
||||
all_tools.extend(RESEARCH_TOOLS)
|
||||
all_tools.extend(get_web_research_tools())
|
||||
all_tools.extend(get_chat_tools())
|
||||
return all_tools
|
||||
|
||||
|
||||
# Define constant tool groups
|
||||
READ_ONLY_TOOLS = get_read_only_tools()
|
||||
|
|
@ -81,7 +96,7 @@ def get_research_tools(
|
|||
expert_enabled: bool = True,
|
||||
human_interaction: bool = False,
|
||||
web_research_enabled: bool = False,
|
||||
) -> list:
|
||||
):
|
||||
"""Get the list of research tools based on mode and whether expert is enabled.
|
||||
|
||||
Args:
|
||||
|
|
|
|||
Loading…
Reference in New Issue