Simplify planning stage by executing tasks directly. Make research notes available to more agents/tools.

This commit is contained in:
AI Christianson 2024-12-27 17:03:47 -05:00
parent f2ce6a7ab0
commit 10b58bb2db
5 changed files with 11 additions and 12 deletions

View File

@ -404,6 +404,7 @@ def run_task_implementation_agent(
related_files=related_files,
key_facts=get_memory_value('key_facts'),
key_snippets=get_memory_value('key_snippets'),
research_notes=get_memory_value('research_notes'),
work_log=get_memory_value('work_log'),
expert_section=EXPERT_PROMPT_SECTION_IMPLEMENTATION if expert_enabled else "",
human_section=HUMAN_PROMPT_SECTION_IMPLEMENTATION if _global_memory.get('config', {}).get('hil', False) else "",

View File

@ -470,9 +470,6 @@ Guidelines:
After finalizing the overall approach:
Use emit_plan to store the high-level implementation plan.
For each sub-task, use emit_task to store a step-by-step description.
The description should be only as detailed as warranted by the complexity of the request.
You may use delete_tasks or swap_task_order to adjust the task list/order as you plan.
Once you are absolutely sure you are completed planning, you may begin to call request_task_implementation one-by-one for each task to implement the plan.
If you have any doubt about the correctness or thoroughness of the plan, consult the expert (if expert is available) for verification.
@ -506,6 +503,9 @@ Key Snippets:
Relevant Files:
{related_files}
Research Notes:
{research_notes}
Work done so far:
<work log>
{work_log}

View File

@ -96,10 +96,7 @@ def get_planning_tools(expert_enabled: bool = True, web_research_enabled: bool =
# Add planning-specific tools
planning_tools = [
delete_tasks,
emit_plan,
emit_task,
swap_task_order,
request_task_implementation,
plan_implementation_completed
]
@ -144,7 +141,8 @@ def get_web_research_tools(expert_enabled: bool = True) -> list:
"""
tools = [
web_search_tavily,
emit_research_notes
emit_research_notes,
task_completed
]
if expert_enabled:

View File

@ -111,12 +111,10 @@ def request_web_research(query: str) -> ResearchResult:
success = True
reason = None
web_research_notes = []
try:
# Run web research agent
from ..agent_utils import run_web_research_agent
original_research_notes = _global_memory.get('research_notes', [])
result = run_web_research_agent(
query,
model,
@ -125,7 +123,6 @@ def request_web_research(query: str) -> ResearchResult:
console_message=query,
config=config
)
web_research_notes = _global_memory.get('research_notes', [])
except AgentInterrupt:
print()
response = ask_human.invoke({"question": "Why did you interrupt me?"})
@ -138,7 +135,6 @@ def request_web_research(query: str) -> ResearchResult:
success = False
reason = f"error: {str(e)}"
finally:
_global_memory['research_notes'] = original_research_notes
# Get completion message if available
completion_message = _global_memory.get('completion_message', 'Task was completed successfully.' if success else None)
@ -155,8 +151,8 @@ def request_web_research(query: str) -> ResearchResult:
return {
"work_log": work_log,
"completion_message": completion_message,
"web_research_notes": web_research_notes,
"key_snippets": get_memory_value("key_snippets"),
"research_notes": get_memory_value("research_notes"),
"success": success,
"reason": reason
}

View File

@ -132,6 +132,7 @@ def ask_expert(question: str) -> str:
related_contents = read_related_files(file_paths)
key_snippets = get_memory_value('key_snippets')
key_facts = get_memory_value('key_facts')
research_notes = get_memory_value('research_notes')
# Build display query (just question)
display_query = "# Question\n" + question
@ -153,6 +154,9 @@ def ask_expert(question: str) -> str:
if related_contents:
query_parts.extend(['# Related Files', related_contents])
if related_contents:
query_parts.extend(['# Research Notes', research_notes])
if key_snippets and len(key_snippets) > 0:
query_parts.extend(['# Key Snippets', key_snippets])